【題目】中,內(nèi)角, 的對(duì)邊分別為, , ,已知,

1的值;

2,求的面積.

【答案】(1) (2)

【解析】試題分析:(1)利用同角三角函數(shù)間的基本關(guān)系求出sinA的值,再將已知等式的左邊sinB中的角B利用三角形的內(nèi)角和定理變形為π﹣(A+C),利用誘導(dǎo)公式得到sinB=sin(A+C),再利用兩角和與差的正弦函數(shù)公式化簡(jiǎn),整理后利用同角三角函數(shù)間的基本關(guān)系即可求出tanC的值;

(2)由tanC的值,利用同角三角函數(shù)間的基本關(guān)系求出cosC的值,再利用同角三角函數(shù)間的基本關(guān)系求出sinC的值,將sinC的值代入中,即可求出sinB的值,由a,sinAsinC的值,利用正弦定理求出c的值,最后由a,c及sinB的值,利用三角形的面積公式即可求出三角形ABC的面積.

試題解析:

(1)∵,

整理得:

(2)由知:

又由正弦定理知:,故c===.①

對(duì)角A運(yùn)用余弦定理:.②

解①②得:(舍去)

∴△ABC的面積為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角A、B、C對(duì)應(yīng)的邊長(zhǎng)分別為a、b、c.已知acosB﹣ b=
(1)求角A;
(2)若a= ,求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中, 平面 的中點(diǎn), , , .

(1)求證: ;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求過(guò)兩點(diǎn)A(1,4)、B(3,2),且圓心在直線(xiàn)y=0上的圓的標(biāo)準(zhǔn)方程.并判斷點(diǎn)M1(2,3),M2(2,4)與圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱柱中,側(cè)棱底面, , , 且點(diǎn)分別為的中點(diǎn).

1)求證: 平面;

2求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C對(duì)的邊分別為a,b,c,且c=2,C=60°.
(1)求 的值;
(2)若a+b=ab,求△ABC的面積SABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若,求函數(shù)的極值;

2)若, , ,使得),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),直線(xiàn)的方程為.

(1)若直線(xiàn)是曲線(xiàn)的切線(xiàn),求證: 對(duì)任意成立;

(2)若對(duì)任意恒成立,求實(shí)數(shù)是應(yīng)滿(mǎn)足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是雙曲線(xiàn)的左右焦點(diǎn),以為直徑的圓與雙曲線(xiàn)的一條漸近線(xiàn)交于點(diǎn),與雙曲線(xiàn)交于點(diǎn),且均在第一象限,當(dāng)直線(xiàn)時(shí),雙曲線(xiàn)的離心率為,若函數(shù),則()

A. 1 B. C. 2 D.

查看答案和解析>>

同步練習(xí)冊(cè)答案