如圖,橢圓上的點(diǎn)M與橢圓右焦點(diǎn)F1的連線MF1x軸垂直,且OMO是坐標(biāo)原點(diǎn))與橢圓長(zhǎng)軸和短軸端點(diǎn)的連線AB平行.

(1)求橢圓的離心率;

(2)F2是橢圓的左焦點(diǎn),C是橢圓上的任一點(diǎn),證明:

F1CF2≤ ;

(3)過(guò)F1且與AB垂直的直線交橢圓于P、Q,若△PF2Q的面積是20 ,求此時(shí)橢圓的方程.

見(jiàn)解析


解析:

(1)易得

(2)證:由橢圓定義得:

(3)解:設(shè)直線PQ的方程為 .代入橢圓方程消去x得:

,整理得:

因此a2=50,b2=25,所以橢圓方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,橢圓
x2
a2
+
y2
b2
=1
上的點(diǎn)M與橢圓右焦點(diǎn)F1的連線MF1與x軸垂直,且OM(O是坐標(biāo)原點(diǎn))與橢圓長(zhǎng)軸和短軸端點(diǎn)的連線AB平行.
(1)求橢圓的離心率;
(2)F2是橢圓的左焦點(diǎn),C是橢圓上的任一點(diǎn),證明:∠F1CF2
π
2
;
(3)過(guò)F1且與AB垂直的直線交橢圓于P、Q,若△PF2Q的面積是20
3
,求此時(shí)橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年安徽省知名省級(jí)示范高中高三第一次統(tǒng)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,橢圓上的點(diǎn)M與橢圓右焦點(diǎn)F1的連線MF1與x軸垂直,且OM(O是坐標(biāo)原點(diǎn))與橢圓長(zhǎng)軸和短軸端點(diǎn)的連線AB平行.
(1)求橢圓的離心率;
(2)過(guò)F1且與AB垂直的直線交橢圓于P,Q,若△PF2Q的面積是,求此時(shí)橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年湖南省衡陽(yáng)市兩校高三聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,橢圓上的點(diǎn)M與橢圓右焦點(diǎn)F1的連線MF1與x軸垂直,且OM(O是坐標(biāo)原點(diǎn))與橢圓長(zhǎng)軸和短軸端點(diǎn)的連線AB平行.
(1)求橢圓的離心率;
(2)F2是橢圓的左焦點(diǎn),C是橢圓上的任一點(diǎn),證明:∠F1CF2
(3)過(guò)F1且與AB垂直的直線交橢圓于P、Q,若△PF2Q的面積是20,求此時(shí)橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年云南省高三數(shù)學(xué)一輪復(fù)習(xí)單元測(cè)試08:圓錐曲線(解析版) 題型:解答題

如圖,橢圓上的點(diǎn)M與橢圓右焦點(diǎn)F1的連線MF1與x軸垂直,且OM(O是坐標(biāo)原點(diǎn))與橢圓長(zhǎng)軸和短軸端點(diǎn)的連線AB平行.
(1)求橢圓的離心率;
(2)F2是橢圓的左焦點(diǎn),C是橢圓上的任一點(diǎn),證明:∠F1CF2;
(3)過(guò)F1且與AB垂直的直線交橢圓于P、Q,若△PF2Q的面積是20,求此時(shí)橢圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案