【題目】已知數(shù)列{an}的前n項(xiàng)和 . (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若 ,求數(shù)列{anbn2}的前n項(xiàng)和Tn .
【答案】解:(Ⅰ)因?yàn)镾n=n2+2n, 所以當(dāng)n≥2時(shí),an=Sn﹣Sn﹣1=n2+2n﹣[(n﹣1)2+2(n﹣1)]=2n+1.
當(dāng)n=1時(shí),a1=S1=12+2×1=3,滿足上式.
故an=2n+1.
(Ⅱ)因?yàn)閎n=2n . 所以anbn2=(2n+1)4n ,
其前n項(xiàng)和:Tn=34+542+743+…+(2n﹣1)4n﹣1+(2n+1)4n①
兩邊乘以4得:4Tn=342+543+…+(2n﹣1)4n+(2n+1)4n+1…②
由①﹣②得:﹣3Tn=34+242+243+…+24n﹣(2n+1)4n+1
=
所以Tn= .
【解析】(I)利用遞推關(guān)系即可得出.(II)利用“錯(cuò)位相減法”與等比數(shù)列的求和公式即可得出.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項(xiàng)和的相關(guān)知識(shí),掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= (其中常數(shù)a>0,且a≠1).
(1)當(dāng)a=10時(shí),解關(guān)于x的方程f(x)=m(其中常數(shù)m>2 );
(2)若函數(shù)f(x)在(﹣∞,2]上的最小值是一個(gè)與a無關(guān)的常數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的左、右焦點(diǎn)分別為F1 , F2 , 離心率為 .以原點(diǎn)為圓心,橢圓的短軸長為直徑的圓與直線x﹣y+ =0相切.
(1)求橢圓C的方程;
(2)如圖,若斜率為k(k≠0)的直線l與x軸、橢圓C順次相交于A,M,N(A點(diǎn)在橢圓右頂點(diǎn)的右側(cè)),且∠NF2F1=∠MF2A.求證直線l恒過定點(diǎn),并求出斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知線段AB的端點(diǎn)B在圓C1:x2+(y﹣4)2=16上運(yùn)動(dòng),端點(diǎn)A的坐標(biāo)為(4,0),線段AB中點(diǎn)為M, (Ⅰ)試求M點(diǎn)的軌C2方程;
(Ⅱ)若圓C1與曲線C2交于C,D兩點(diǎn),試求線段CD的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面,平面ABCD∩平面ABPE=AB,且AB=BP=2,AD=AE=1,AE⊥AB,且AE∥BP. (Ⅰ)設(shè)點(diǎn)M為棱PD中點(diǎn),求證:EM∥平面ABCD;
(Ⅱ)線段PD上是否存在一點(diǎn)N,使得直線BN與平面PCD所成角的正弦值等于 ?若存在,試確定點(diǎn)N的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)(x>0)滿足:f(xy)=f(x)+f(y),當(dāng)x<1時(shí)f(x)>0,且f( )=1;
(1)證明:y=f(x)是(x>0)上的減函數(shù);
(2)解不等式f(x﹣3)>f( )﹣2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=xlnx,g(x)=x3+ax2﹣x+2 (Ⅰ)如果函數(shù)g(x)的單調(diào)遞減區(qū)間為(﹣ ,1),求函數(shù)g(x)的解析式;
(Ⅱ)對(duì)一切的x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點(diǎn)在原點(diǎn),它的準(zhǔn)線過雙曲線 的右焦點(diǎn),而且與x軸垂直.又拋物線與此雙曲線交于點(diǎn) ,求拋物線和雙曲線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c為△ABC的內(nèi)角A,B,C的對(duì)邊,滿足 = ,函數(shù)f(x)=sinωx(ω>0)在區(qū)間[0, ]上單調(diào)遞增,在區(qū)間[ ,π]上單調(diào)遞減.
(1)證明:b+c=2a;
(2)若f( )=cos A,試判斷△ABC的形狀.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com