【題目】已知拋物線的頂點在原點,它的準線過雙曲線 的右焦點,而且與x軸垂直.又拋物線與此雙曲線交于點 ,求拋物線和雙曲線的方程.
【答案】解:由題意,設拋物線方程為y2=﹣2px(p>0) ∵拋物線圖象過點 ,∴ ,解之得p=2.
所以拋物線方程為y2=﹣4x,準線方程為x=1.
∵雙曲線的右焦點經(jīng)過拋物線的準線,∴雙曲線右焦點坐標為(1,0),c=1
∵雙曲線經(jīng)過點 ,∴
結合c2=a2+b2=1,聯(lián)解得 或a2=9,b2=﹣8(舍去)
∴雙曲線方程為 .
綜上所述,拋物線方程為y2=﹣4x,雙曲線方程為
【解析】根據(jù)題中的點在拋物線上,列式解出拋物線方程為y2=﹣2x,從而算出雙曲線右焦點坐標為(1,0),可得c2=a2+b2=1.再由點 在雙曲線上建立關于a、b的方程,聯(lián)解得到a、b的值,即可得到雙曲線的方程.
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:函數(shù)f(x)=logax在區(qū)間(0,+∞)上是單調遞增函數(shù);命題q:不等式(a﹣2)x2+2(a﹣2)x﹣4<0對任意實數(shù)x恒成立.若p∨q為真命題,且p∧q為假命題,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和 . (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若 ,求數(shù)列{anbn2}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知 為空間中兩條不同的直線, 為空間中兩個不同的平面,下列命題正確的是( )
A.若 則
B.若 ,則
C.若 在 內的射影互相平行,則
D.若 ,則
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱 中,底面 是邊長為2的等邊三角形, 為 的中點.
(1)求證: 平面 ;
(2)若四邊形 是正方形,且 , 求直線 與平面 所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在空間中,給出下面四個命題,則其中正確命題的個數(shù)為( )
①過平面 外的兩點,有且只有一個 平面與平面 垂直;
②若平面 內有不共線三點到平面 的距離都相等,則 ∥ ;
③若直線 與平面內的無數(shù)條直線垂直,則 ;
④兩條異面直線在同一平面內的射影一定是兩平行線;
A.3
B.2
C.1
D.0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】和諧高級中學共有學生570名,各班級人數(shù)如表:
一班 | 二班 | 三班 | 四班 | |
高一 | 52 | 51 | y | 48 |
高二 | 48 | x | 49 | 47 |
高三 | 44 | 47 | 46 | 43 |
已知在全校學生中隨機抽取1名,抽到高二年級學生的概率是 .
(1)求x,y的值;
(2)現(xiàn)用分層抽樣的方法在全校抽取114名學生,應分別在各年級抽取多少名?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com