8.如圖,點(diǎn)A,B是單位圓上的兩點(diǎn),A,B兩點(diǎn)分別在第一、二象限,點(diǎn)C是圓與x軸正半軸的交點(diǎn),角∠AOB=$\frac{π}{4}$,若點(diǎn)A的坐標(biāo)為($\frac{\sqrt{2}}{10}$,$\frac{7\sqrt{2}}{10}$),記∠COA=α.
(Ⅰ)求$\frac{1+sin2α}{1+cos2α}$的值;
(Ⅱ)求點(diǎn)B的坐標(biāo).

分析 (Ⅰ)由已知,根據(jù)三角函數(shù)的定義可求sinα,cosα的值,利用二倍角公式即可計(jì)算得解.
(Ⅱ)利用特殊角的三角函數(shù)值,兩角和的正弦函數(shù)余弦函數(shù)公式分別求出cos∠COB,sin∠COB的值即可得解.

解答 (本題滿分為12分)
解:(Ⅰ)∵A的坐標(biāo)為($\frac{\sqrt{2}}{10}$,$\frac{7\sqrt{2}}{10}$),根據(jù)三角函數(shù)的定義可知:sinα=$\frac{7\sqrt{2}}{10}$,cosα=$\frac{\sqrt{2}}{10}$,
∴$\frac{1+sin2α}{1+cos2α}$=$\frac{1+2sinαcosα}{2co{s}^{2}α}$=32…6分
(Ⅱ)∵角∠AOB=$\frac{π}{4}$,
∴cos∠COB=cos(α+$\frac{π}{4}$)=cosαcos$\frac{π}{4}$-sinαsin$\frac{π}{4}$=-$\frac{3}{5}$,
∴sin∠COB=sin(α+$\frac{π}{4}$)=sinαcos$\frac{π}{4}$+cosαsin$\frac{π}{4}$=$\frac{4}{5}$,
∴點(diǎn)B(-$\frac{3}{5}$,$\frac{4}{5}$)…12分

點(diǎn)評(píng) 本題主要考查了三角函數(shù)的定義,二倍角公式,特殊角的三角函數(shù)值,兩角和的正弦函數(shù)、余弦函數(shù)公式的綜合應(yīng)用,考查了數(shù)形結(jié)合思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.將函數(shù)y=sin(4x+$\frac{π}{4}$)的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,再向右平移$\frac{π}{8}$個(gè)單位,得到的函數(shù)的一個(gè)對(duì)稱中心是( 。
A.($\frac{π}{2}$,0)B.($\frac{π}{4}$,0)C.($\frac{π}{6}$,0)D.($\frac{π}{8}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若點(diǎn)(sin$\frac{5π}{6}$,cos$\frac{5π}{6}$)在角α的終邊上,則角α的終邊位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.函數(shù)f(x)=Acos(ωx+φ)(A,ω,φ為常數(shù),A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則f($\frac{π}{6}$)等于(  )
A.$\frac{\sqrt{6}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知O是三角形ABC內(nèi)部一點(diǎn),滿足$\overrightarrow{OA}$+2$\overrightarrow{OB}$+m$\overrightarrow{OC}$=$\overrightarrow{0}$,$\frac{{S}_{△AOB}}{{S}_{△ABC}}$=$\frac{4}{7}$,則實(shí)數(shù)m=( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若曲線f (x)=2lnx-ax存在直線3x+y+1=0平行的切線,則實(shí)數(shù)a的取值范圍為(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知一個(gè)k進(jìn)制數(shù)132與十進(jìn)制數(shù)42相等,那么k等于(  )
A.8或5B.6C.5D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,四棱錐S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的一點(diǎn),且SE=2EB.
(1)證明:DE∥平面SBC;
(2)求二面角A-DE-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.△ABC為等腰直角三角形,AC=BC=4,∠ACB=90°,D、E分別是邊AC和AB的中點(diǎn),現(xiàn)將△ADE沿DE折起,使面ADE⊥面DEBC,H、F分別是邊AD和BE的中點(diǎn),平面BCH與AE、AF分別交于I、G兩點(diǎn).
(Ⅰ)求證:IH∥BC;
(Ⅱ)求二面角A-GI-C的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案