3.如圖,在正方體ABCD-A1B1C1D1中,E是CC1的中點(diǎn),求證:
(1)AC1⊥BD;
(2)AC1∥平面BDE.

分析 (1)證明DB⊥面AA1BC1C,即可得AC1⊥BD
(2)如圖連結(jié)AC交BD與O,連結(jié)OE,由OE∥AC1,得AC1∥平面BDE

解答 證明:(1)AA1⊥平面ABCD,∴AA1⊥BD,
又∵AC⊥BD,AA1F∩AC=A,∴DB⊥面AA1BC1C,
又因?yàn)锳C1?面AA1BC1C,∴AC1⊥BD
(2)如圖連結(jié)AC交BD與O,連結(jié)OE,
因?yàn)镺、E分別是AC、CC1的中點(diǎn),
∴OE∥AC1
又因?yàn)镺E?平面BDE,AC1?平面BDE.
∴AC1∥平面BDE

點(diǎn)評(píng) 本題考查了線線垂直、線面平行的判定,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x),g(x)的定義域都是D,直線x=x0(x0∈D),與y=f(x),y=g(x)的圖象分別交于A,B兩點(diǎn),若|AB|的值是不等于0的常數(shù),則稱曲線 y=f(x),y=g(x)為“平行曲線”,設(shè)f(x)=ex-alnx+c(a>0,c≠0),且y=f(x),y=g(x)為區(qū)間(0,+∞)的“平行曲線”,g(1)=e,g(x)在區(qū)間(2,3)上的零點(diǎn)唯一,則a的取值范圍是[3e3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某出租車租賃公司收費(fèi)標(biāo)準(zhǔn)如下:起價(jià)費(fèi)10元(即里程不超過5公里,按10元收費(fèi)),超過5公里,但不超過20公里的部分,每公里按1.5元收費(fèi),超過20公里的部分,每公里再加收0.3元.
(1)請(qǐng)建立租賃綱總價(jià)y關(guān)于行駛里程x的函數(shù)關(guān)系式;
(2)某人租車行駛了30公里,應(yīng)付多少錢?(寫出解答過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列四個(gè)結(jié)論中正確的個(gè)數(shù)為( 。
①兩條不同的直線都和同一個(gè)平面平行,則這兩條直線平行.
②兩條不同直線都和第三條直線垂直,則這兩條直線平行.
③若a∥α,b⊆α,則a∥b
④若a∥b,b⊆α,則a∥α
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知F1(-4,0),F(xiàn)2(4,0)為橢圓$\frac{x^2}{25}+\frac{y^2}{9}=1$的兩個(gè)焦點(diǎn),P在橢圓上,且△PF1F2的面積為$3\sqrt{3}$,則cos∠F1PF2=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在三棱錐A-BCD中,AB⊥平面BCD,CD⊥BD.求證CD⊥平面ABD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知$a={(\frac{1}{3})}^{-3},b={(0.3)}^{2},c={log}_{\frac{1}{2}}3$,則a,b,c的大小關(guān)系是( 。
A.a>b>cB.a>c>bC.b>a>cD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.閱讀下列程序,并回答問題.

(1)中若輸入1,2,則輸出的結(jié)果為1,-2,-1; 
(2)中若輸入3,2,5,則輸出的結(jié)果為C=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,梯形FDCG,DC∥FG,過點(diǎn)D,C作DA⊥FG,CB⊥FG,垂足分別為A,B,且DA=AB=2.現(xiàn)將△DAF沿DA,△CBG沿CB翻折,使得點(diǎn)F,G重合,記為E,且點(diǎn)B在面AEC的射影在線段EC上.
(Ⅰ)求證:AE⊥EB;
(Ⅱ)設(shè)$\frac{AF}{BG}$=λ,是否存在λ,使二面角B-AC-E的余弦值為$\frac{\sqrt{3}}{3}$?若存在,求λ的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案