設(shè)集合A={0,1,2,7},集合B={x|y=
2x
x-1
},則A∩B等于(  )
A、{1,2,7}
B、{2,7}
C、{0,1,2}
D、{1,2}
考點(diǎn):交集及其運(yùn)算
專(zhuān)題:集合
分析:求解函數(shù)定義域化簡(jiǎn)集合B,然后直接利用交集運(yùn)算得答案.
解答: 解:由x-1>0,得x>1,∴B={x|y=
2x
x-1
}={x|x>1},
又A={0,1,2,7},
∴A∩B={2,7}.
故選:B.
點(diǎn)評(píng):本題考查了函數(shù)的定義域及其求法,考查了交集及其運(yùn)算,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)Sn為等差數(shù)列{an}(n∈N+)的前n項(xiàng)和,且S2=S6,a4=1,則a5=( 。
A、-1B、0C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,A(0,0),B(1,2)兩點(diǎn)繞定點(diǎn)P順時(shí)針旋轉(zhuǎn)θ角分別到A′(4,4),B′(5,2)兩點(diǎn),則cosθ的值為( 。
A、0
B、-
3
5
C、-
1
2
D、-
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y為正實(shí)數(shù),則( 。
A、10lgx-lgy=10lgx-10lgy
B、10lg(x-y)=
10lgx
10lgy
C、10 
lgx
lgy
=10lgx-10lgy
D、10 lg
x
y
=
10lgx
10lgy

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若i為虛數(shù)單位,則i+i2+i3+i4的值為( 。
A、-1B、iC、0D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}中,a1=1,an+1=
2
3
an+1,則通項(xiàng)公式an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,a1=
1
2
,且(n+1)an+1=
nan
nan+1
(n∈N*),則數(shù)列{an}的前2014項(xiàng)的和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于數(shù)列{an},規(guī)定數(shù)列{△an}為數(shù)列{an}的一階差分?jǐn)?shù)列,其中△an=an+1-an(n∈N*);一般地,規(guī)定{△kan}為{an}的k階差分?jǐn)?shù)列,其中△kan=△k-1an+1-△k-1an,且k∈N*,k≥2.
(1)已知數(shù)列{an}的通項(xiàng)公式an=
5
2
n2-
13
2
n(n∈N*).試證明{△an}是等差數(shù)列;
(2)若數(shù)列{an}的首項(xiàng)a1=-13,且滿(mǎn)足△2an-△an+1+an=-22n,(n∈N*),求數(shù)列{
an+1
2n+1
-
an
2n
}及{an}的通項(xiàng)公式;
(3)在(2)的條件下,判斷an是否存在最小值,若存在求出其最小值,若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若
AB
BC
=
BC
CA
=
CA
AB
,證明△ABC是等邊三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案