已知直線l的參數(shù)方程:
x=t
y=1+2t
(t為參數(shù))和圓C的極坐標(biāo)方程:ρ=2
2
sin(θ+
π
4
),判斷直線l和⊙C的位置關(guān)系.
分析:把直線的參數(shù)方程化為普通方程,把圓的極坐標(biāo)方程化為直角坐標(biāo)方程,利用點(diǎn)到直線的距離公式得出圓心代直線的距離與半徑比較即可判斷出位置關(guān)系.
解答:解:直線l消去此時(shí)t,得直線l的直角坐標(biāo)方程為y=2x+1;
由圓C的極坐標(biāo)方程:ρ=2
2
sin(θ+
π
4
),化為ρ=2
2
(
2
2
sinθ+
2
2
cosθ)
=2(sinθ+cosθ),
兩邊同乘以ρ得ρ2=2(ρsinθ+ρcosθ),化為x2+y2=2y+2x.
得⊙C的直角坐標(biāo)方程為:(x-1)2+(y-1)2=2,
圓心C到直線l的距離d=
|2-1+1|
5
=
2
5
5
2
=r
,
所以直線l和⊙C相交.
點(diǎn)評(píng):熟練的吧直線的參數(shù)方程化為普通方程,把圓的極坐標(biāo)方程化為直角坐標(biāo)方程,及掌握點(diǎn)到直線的距離公式和判斷出位置關(guān)系的方法是解題的關(guān)鍵..
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

C選修4-4:坐標(biāo)系與參數(shù)方程已知直線l的參數(shù)方程:
x=2t
y=1+4t
(t為參數(shù)),曲線C的極坐標(biāo)方程:ρ=2
2
sin(θ+
π
4
),求直線l被曲線C截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

極坐標(biāo)與參數(shù)方程:
已知直線l的參數(shù)方程是:
x=2t
y=1+4t
(t為參數(shù)),圓C的極坐標(biāo)方程是:ρ=2
2
sin(θ+
π
4
),試判斷直線l與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l的參數(shù)方程為
x=
1
2
t
y=2+
3
2
t
(t為參數(shù)),曲線C的極坐標(biāo)方程是ρ=
sinθ
1-sin2θ
以極點(diǎn)為原點(diǎn),極軸為x軸正方向建立直角坐標(biāo)系,點(diǎn)M(0,2),直線l與曲線C交于A,B兩點(diǎn).
(1)寫出直線l的普通方程與曲線C的直角坐標(biāo)方程;
(2)線段MA,MB長(zhǎng)度分別記|MA|,|MB|,求|MA|•|MB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(坐標(biāo)系與參數(shù)方程選做題) 已知直線l的參數(shù)方程為
x=
2
2
t
y=1+
2
2
t
(t為參數(shù)),圓C的參數(shù)方程為
x=cosθ+2
y=sinθ
(θ為參數(shù)),則圓心C到直線l的距離為
3
2
2
3
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•香洲區(qū)模擬)已知直線L的參數(shù)方程為:
x=t
y=a+
3
t
(t為參數(shù)),圓C的參數(shù)方程為:
x=sinθ
y=cosθ+1
(θ為參數(shù)).若直線L與圓C有公共點(diǎn),則常數(shù)a的取值范圍是
[-1,3]
[-1,3]

查看答案和解析>>

同步練習(xí)冊(cè)答案