已知函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時,f(x)=x(x-2).
(I)求函數(shù)f(x)在R上的解析式;
(II)在給出的坐標(biāo)系中描點(diǎn)法作出函數(shù)y=f(x)的圖象.
分析:(I)由函數(shù)的奇偶性求函數(shù)的解析式,先在所求區(qū)間上設(shè)自變量x,則-x在已知區(qū)間上,然后利用已知區(qū)間上的解析式和函數(shù)的奇偶性即可求得函數(shù)的解析式.
(II)利用列表,描點(diǎn),連線即可得函數(shù)的圖象,注意點(diǎn)不能少于5個.
解答:解:(I)∵x≥0時,f(x)=x(x-2).∴當(dāng)x<0時,-x>0,∴f(-x)=-x(-x-2)=x(x+2),又因?yàn)閒(x)是定義在R上的偶函數(shù)∴f(x)=f(-x)=x(x+2)
即當(dāng)x<0,f(x)=x(x+2),所以f(x)=
x(x-2),x≥0
x(x+2),x<0

(II)列表精英家教網(wǎng)
描點(diǎn)連線,得到函數(shù)的圖象,如圖:
精英家教網(wǎng)
點(diǎn)評:本題考查了利用函數(shù)的奇偶性求函數(shù)的解析式,以及利用描點(diǎn)法畫函數(shù)的圖象,考查作圖能力,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x+2-x
2
,g(x)=
2x-2-x
2
,
(1)計(jì)算:[f(1)]2-[g(1)]2
(2)證明:[f(x)]2-[g(x)]2是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=x+
a
x
的定義域?yàn)椋?,+∞),且f(2)=2+
2
2
.設(shè)點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過點(diǎn)P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值.
(2)問:|PM|•|PN|是否為定值?若是,則求出該定值;若不是,請說明理由.
(3)設(shè)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1y1),N(x2y2)
是f(x)圖象上的兩點(diǎn),橫坐標(biāo)為
1
2
的點(diǎn)P滿足2
OP
=
OM
+
ON
(O為坐標(biāo)原點(diǎn)).
(Ⅰ)求證:y1+y2為定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn為數(shù)列{an}的前n項(xiàng)和,若Tn<m(Sn+1+1)對一切n∈N*都成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)是f(x)圖象上的兩點(diǎn),且x1+x2=1.
(1)求證:y1+y2為定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,N≥2),求Sn
(3)在(2)的條件下,若an=
1
6
 ,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn為數(shù)列{an}的前n項(xiàng)和.求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直線y=m與兩個相鄰函數(shù)的交點(diǎn)為A,B,若m變化時,AB的長度是一個定值,則AB的值是( 。

查看答案和解析>>

同步練習(xí)冊答案