設(shè)函數(shù),且的圖象的一個(gè)對(duì)稱中心到最近的對(duì)稱軸的距離為,

(Ⅰ)求的值

(Ⅱ)求在區(qū)間上的最大值和最小值.

 

【答案】

(Ⅰ)1;(Ⅱ).

【解析】

試題分析:(Ⅰ)根據(jù)三角恒等變形化簡(jiǎn),得,而的圖象的一個(gè)對(duì)稱中心到最近的對(duì)稱軸的距離為,則,從而根據(jù),解得;(Ⅱ)由(Ⅰ)知,當(dāng)時(shí),將當(dāng)做一個(gè)整體,則,所以,所以,則在區(qū)間上的最大值和最小值分別為.

試題解析:(Ⅰ)

,

的圖象的一個(gè)對(duì)稱中心到最近的對(duì)稱軸的距離為,且,所以,解得.

(Ⅱ)由(Ⅰ)知,當(dāng)時(shí),,所以,所以在區(qū)間上的最大值和最小值分別為.

考點(diǎn):1.三角恒等變形;2.三角函數(shù)的最值求解.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c.
(1)若a>b>c且f(1)=0,判斷函數(shù)f(x)的圖象與x軸公共點(diǎn)的個(gè)數(shù);
(2)證明:若對(duì)x1,x2且x1<x2,f(x1)≠f(x2),則方程f(x)=
f(x1)+f(x2)2
必有一實(shí)根在區(qū)間(x1,x2)內(nèi);
(3)在(1)的條件下,設(shè)f(x)=0的另一根為x0,若方程f(x)+a=0有解證明-2<x0≤-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•濱州一模)設(shè)函數(shù)f(x)=p(x-
1x
)-2lnx,g(x)=x2
(I)若直線l與函數(shù)f(x),g(x)的圖象都相切,且與函數(shù)f(x)的圖象相切于點(diǎn)(1,0),求實(shí)數(shù)p的值;
(II)若f(x)在其定義域內(nèi)為單調(diào)函數(shù),求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•溫州一模)設(shè)函數(shù)y=f(x),我們把滿足方程f(x)=0的值x叫做函數(shù)y=f(x)的零點(diǎn).現(xiàn)給出函數(shù)f(x)=x3-3x2+ax+a2-10,若它是R上的單調(diào)函數(shù),且1是它的零點(diǎn).
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)設(shè)Q1(x1,0),若過P1(x1,f(x1))作函數(shù)y=f(x)的圖象的切線與x軸交于點(diǎn)Q2(x2,0),再過P2(x2,f(x2))作函數(shù)y=f(x)的圖象的切線與x軸交于點(diǎn)Q3(x3,0),…,依此下去,過Pn(xn,f(xn))(n∈N*)作函數(shù)y=f(x)的圖象的切線與x軸交于點(diǎn)Qn+1(xn+1,0),….
若x1=2,xn>1,求xn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在x0∈D,使得y0=f(x0)=x0,則稱以(x0,y0)為坐標(biāo)的點(diǎn)為函數(shù)圖象上的不動(dòng)點(diǎn).

(1)若函數(shù)f(x)=的圖象上有兩個(gè)關(guān)于原點(diǎn)對(duì)稱的不動(dòng)點(diǎn),求a、b滿足的條件;

(2)在(1)的條件下,若a=8,記函數(shù)f(x)圖象上的兩個(gè)不動(dòng)點(diǎn)分別為A、A′,P為函數(shù)f(x)的圖象上的另一點(diǎn),且其縱坐標(biāo)yP>3,求點(diǎn)P到直線AA′距離的最小值及取得最小值時(shí)點(diǎn)P的坐標(biāo).

(3)命題“若定義在R上的奇函數(shù)f(x)的圖象上存在有限個(gè)不動(dòng)點(diǎn),則不動(dòng)點(diǎn)有奇數(shù)個(gè)”是否正確?若正確,試給予證明,并舉出一例;若不正確,試舉一反例說明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年華師一附中期中檢測(cè)理)設(shè)函數(shù)f(x)的圖象關(guān)于點(diǎn)(2, 對(duì)稱,且存在反函數(shù),若,則等于__________。

查看答案和解析>>

同步練習(xí)冊(cè)答案