【題目】(1)設(shè)不等式2x1m(x21)對滿足|m|≤2的一切實數(shù)m的取值都成立,求x的取值范圍;

(2)是否存在m使得不等式2x1m(x21)對滿足|x|≤2的一切實數(shù)x的取值都成立.

【答案】(1) (2)沒有

【解析】試題分析

(1)由題意構(gòu)造變量為的函數(shù),將問題轉(zhuǎn)化為恒成立的問題求解.(2)構(gòu)造函數(shù),問題即為當(dāng)恒成立時求的范圍然后分兩種情況,利用函數(shù)的圖象,將問題化為不等式解決即可.

試題解析:

(1)設(shè)

由題意得恒成立,

,

解得

實數(shù)x的取值范圍為

(2) ,

由題意可得恒成立

①當(dāng)時,則當(dāng)時,f(x)= 2x-1,不滿足題意.

②當(dāng)時,若恒成立,則需滿足

,

解不等式組可得,以上不等式組的解集均為空集.

所以不存在實數(shù)滿足題意.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)如圖在三棱錐中, 分別為棱的中點,已知,

求證(1)直線平面;

(2)平面 平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

)當(dāng)時,證明:為偶函數(shù);

)若上單調(diào)遞增,求實數(shù)的取值范圍;

)若,求實數(shù)的取值范圍,使上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了選拔參加自行車比賽的選手,對自行車運動員甲、乙兩人在相同條件下進(jìn)行了6次測試,測得他們的最大速度(單位:m/s)的數(shù)據(jù)如下:

27

38

30

37

35

31

33

29

38

34

28

36

(1)畫出莖葉圖,由莖葉圖你能獲得哪些信息;

(2)估計甲、乙兩運動員的最大速度的平均數(shù)和方差,并判斷誰參加比賽更合適.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位需要從甲、乙人中選拔一人參加新崗位培訓(xùn),特別組織了個專項的考試,成績統(tǒng)計如下:

第一項

第二項

第三項

第四項

第五項

甲的成績

乙的成績

(1)根據(jù)有關(guān)統(tǒng)計知識,回答問題:若從甲、乙人中選出人參加新崗培訓(xùn),你認(rèn)為選誰合適,請說明理由;

(2)根據(jù)有關(guān)槪率知識,解答以下問題:

從甲、乙人的成績中各隨機(jī)抽取一個,設(shè)抽到甲的成績?yōu)?/span>,抽到乙的成績?yōu)?/span>,用表示滿足條件的事件,求事件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中, 底面, , 是棱上一點.

I)求證:

II)若, 分別是 的中點,求證: 平面

III)若二面角的大小為,求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,其中a,b,c∈R.
(Ⅰ)若a=b=1,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若a=0,且當(dāng)x≥0時,f(x)≥1總成立,求實數(shù)b的取值范圍;
(Ⅲ)若a>0,b=0,若f(x)存在兩個極值點x1 , x2 , 求證;f(x1)+f(x2)<e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)x,y滿足不等式組 ,若z=ax+y的最大值為2a+4,最小值為a+1,則實數(shù)a的取值范圍為(
A.[﹣1,2]
B.[﹣2,1]
C.[﹣3,﹣2]
D.[﹣3,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,已知曲線C1的極坐標(biāo)方程ρ2cos2θ=8,曲線C2的極坐標(biāo)方程為θ= ,曲線C1 , C2相交于A,B兩點.以極點O為原點,極軸所在直線為x軸建立平面直角坐標(biāo)系,已知直線l的參數(shù)方程為 (t為參數(shù)).
(1)求A,B兩點的極坐標(biāo);
(2)曲線C1與直線l分別相交于M,N兩點,求線段MN的長度.

查看答案和解析>>

同步練習(xí)冊答案