【題目】如甲圖所示,在矩形中, , , 的中點(diǎn),將沿折起到位置,使平面平面,得到乙圖所示的四棱錐

求證: 平面;

求二面角的余弦值.

【答案】(Ⅰ)見解析;(Ⅱ) .

【解析】試題分析:(Ⅰ)取中點(diǎn),連,證得,又平面平面,證得平面,證明再利用線面的判定定理,即可證得平面

(Ⅱ)由題意,取中點(diǎn),以為坐標(biāo)原點(diǎn),分別以, 軸正方向建立空間直角坐標(biāo)系,由(Ⅰ)知: 是平面的法向量,設(shè)平面的法向量為,利用空間向量的夾角公式,即可求解結(jié)論.

試題解析:

(Ⅰ)如下圖,取中點(diǎn),連,在中, , ,又平面平面, 平面 平面, ,即.在中,易得, , ,

,又,

平面

(Ⅱ)由題意,取中點(diǎn),以為坐標(biāo)原點(diǎn),分別以, 軸正方向建立間直角坐標(biāo)系如圖所示,則,由(Ⅰ)知: 是平面的法向量,設(shè)平面的法向量為,則

,令,則, ,

,設(shè)二面角的平面角為,

由圖可知,二面角的平面角為鈍角,

,即:二面角的余弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知菱形中,對(duì)角線相交于一點(diǎn), ,將沿著折起得,連接.

(1)求證:平面平面

(2)若點(diǎn)在平面上的投影恰好是的重心,求直線與底面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), ,函數(shù)的圖象在點(diǎn)處的切線平行于軸.

(1)求的值;

(2)求函數(shù)的極小值;

(3)設(shè)斜率為的直線與函數(shù)的圖象交于兩點(diǎn), ,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),若過點(diǎn)可作三條直線與曲線相切,則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三人每人有一張游泳比賽的門票,已知每張票可以觀看指定的三場(chǎng)比賽中的任一場(chǎng)(三場(chǎng)比賽時(shí)間不沖突),甲乙二人約定他們會(huì)觀看同一場(chǎng)比賽并且他倆觀看每場(chǎng)比賽的可能性相同,又已知丙觀看每一場(chǎng)比賽的可能性也相同,且甲乙的選擇與丙的選擇互不影響.

(1)求三人觀看同一場(chǎng)比賽的概率;

(2)記觀看第一場(chǎng)比賽的人數(shù)是,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x+ ,且函數(shù)y=f(x)的圖像經(jīng)過點(diǎn)(1,2).
(1)求m的值;
(2)判斷函數(shù)的奇偶性并加以證明;
(3)證明:函數(shù)f(x)在(1,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,已知點(diǎn),曲線的參數(shù)方程為.以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(Ⅰ)判斷點(diǎn)與直線的位置關(guān)系并說明理由;

(Ⅱ)設(shè)直線與曲線的兩個(gè)交點(diǎn)分別為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

I)若,求函數(shù)的單調(diào)區(qū)間;(其中是自然對(duì)數(shù)的底數(shù))

II)設(shè)函數(shù),當(dāng)時(shí),曲線有兩個(gè)交點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=log (x2﹣ax+b). (Ⅰ)若函數(shù)f(x)的定義域?yàn)椋ī仭蓿?)∪(3,+∞),求實(shí)數(shù)a,b的值;
(Ⅱ)若f(﹣2)=﹣3且f(x)在(﹣∞,﹣1]上為增函數(shù),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案