【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務質量,收集并整理了20171月至201912月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖.根據(jù)該折線圖,下列結論錯誤的是( 。

A.年接待游客量逐年增加

B.各年的月接待游客量高峰期大致在8

C.20171月至12月月接待游客量的中位數(shù)為30萬人

D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)

【答案】C

【解析】

利用折線圖的性質直接求解.

解:由20171月至201912月期間月接待游客量的折線圖得:

中,年接待游客量雖然逐月波動,但總體上逐年增加,故正確;

中,各年的月接待游客量高峰期都在8月,故正確;

中,20171月至12月月接待游客量的中位數(shù)小于30萬人,故錯誤;

中,各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn),故正確.

故選:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖1為某省2018年1~4月快遞業(yè)務量統(tǒng)計圖,圖2是該省2018年1~4月快遞業(yè)務收入統(tǒng)計圖,下列對統(tǒng)計圖理解錯誤的是( )

A. 2018年1~4月的業(yè)務量,3月最高,2月最低,差值接近2000萬件

B. 2018年1~4月的業(yè)務量同比增長率均超過50%,在3月底最高

C. 從兩圖來看,2018年1~4月中的同一個月的快遞業(yè)務量與收入的同比增長率并不完全一致

D. 從1~4月來看,該省在2018年快遞業(yè)務收入同比增長率逐月增長

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校進入高中數(shù)學競賽復賽的學生中,高一年級有8人,高二年級有16人,高三年級有32人,現(xiàn)釆用分層抽樣的方法從這些學生中抽取7人進行釆訪.

1)求應從各年級分別抽取的人數(shù);

2)若從抽取的7人中再隨機抽取2人做進一步了解(注高一學生記為,高二學生記為,高三學生記為,

①列出所有可能的抽取結果;

②求抽取的2人均為高三年級學生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)()的導函數(shù)為.

(Ⅰ)當時,求的最小值;

(Ⅱ)若函數(shù)存在極值,試比較,,的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】連續(xù)投骰子兩次得到的點數(shù)分別為m,n,作向量m,n),則(1,﹣1)的夾角成為直角三角形內(nèi)角的概率是_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱錐PABC中,PC⊥平面ABC,PCAC=2,ABBCDPB上一點,且CD⊥平面PAB

(1)求證:AB⊥平面PCB;

(2)求二面角CPAB的大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】1)已知雙曲線的中心在原點,焦點在x軸上,實軸長為4,漸近線方程為.求雙曲線的標準方程;

2)過(1)中雙曲線上一點P的直線分別交兩條漸近于兩點,且P是線段AB的中點,求證:為常數(shù);

3)我們知道函數(shù)的圖象是由雙曲線的圖象逆時針旋轉45°得到的,函數(shù)的圖象也是雙曲線,請嘗試寫出曲線的性質(不必證明).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在股票市場上,投資者常根據(jù)股價每股的價格走勢圖來操作,股民老張在研究某只股票時,發(fā)現(xiàn)其在平面直角坐標系內(nèi)的走勢圖有如下特點:每日股價與時間的關系在ABC段可近似地用函數(shù)的圖象從最高點A到最低點C的一段來描述如圖,并且從C點到今天的D點在底部橫盤整理,今天也出現(xiàn)了明顯的底部結束信號.老張預測這只股票未來一段時間的走勢圖會如圖中虛線DEF段所示,且DEF段與ABC段關于直線l對稱,點BD的坐標分別是

請你幫老張確定a,,的值,并寫出ABC段的函數(shù)解析式;

如果老張預測準確,且今天買入該只股票,那么買入多少天后股價至少是買入價的兩倍?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某闖關游戲共有兩關,游戲規(guī)則:先闖第一關,當?shù)谝魂P闖過后,才能進入第二關,兩關都闖過,則闖關成功,且每關各有兩次闖關機會.已知闖關者甲第一關每次闖過的概率均為,第二關每次闖過的概率均為.假設他不放棄每次闖關機會,且每次闖關互不影響.

(1)求甲恰好闖關3次才闖關成功的概率;

(2)記甲闖關的次數(shù)為,求隨機變量的分布列和期望.。

查看答案和解析>>

同步練習冊答案