4.已知四棱錐S-ABCD中,底面ABCD是邊長為2的菱形,∠BAD=60°,SA=SD=$\sqrt{5},SB=\sqrt{7}$,點E是棱AD的中點,點F在棱SC上,且$\frac{SF}{SC}$=λ,SA∥平面BEF.
(Ⅰ)求實數(shù)λ的值;
(Ⅱ)求三棱錐F-EBC的體積.

分析 (Ⅰ)連接AC,設(shè)AC∩BE=G,推導(dǎo)出SA∥FG,從而△GEA~△GBC,由此能求出$λ=\frac{1}{3}$.
(Ⅱ)由${V_{F-BCE}}=\frac{2}{3}{V_{S-EBC}}=\frac{1}{3}{V_{S-ABCD}}$,能求出三棱錐F-EBC的體積.

解答 解:(Ⅰ)連接AC,設(shè)AC∩BE=G,則平面SAC∩平面EFB=FG,
∵SA∥平面EFB,∴SA∥FG,
∴△GEA~△GBC,∴$\frac{AG}{GC}=\frac{AE}{BC}=\frac{1}{2}$,
∴$\frac{SF}{FC}=\frac{AG}{GC}=\frac{1}{2}⇒SF=\frac{1}{3}SC$,
解得$λ=\frac{1}{3}$.
(Ⅱ)∵$SA=SD=\sqrt{5}$,∴SE⊥AD,SE=2,
又∵AB=AD=2,∠BAD=60°,∴$BE=\sqrt{3}$,
∴SE2+BE2=SB2,∴SE⊥BE,
∴SE⊥平面ABCD,
所以${V_{F-BCE}}=\frac{2}{3}{V_{S-EBC}}=\frac{1}{3}{V_{S-ABCD}}=\frac{1}{3}×\frac{1}{3}×2×2sin60°×2=\frac{{4\sqrt{3}}}{9}$.

點評 本題考查實數(shù)值的求法,考查幾何體的體積的求法,考查空間中線線、線面、面面的位置關(guān)系等基礎(chǔ)知識,考查推理論證能力、運算求解能力、空間思維能力,考查數(shù)數(shù)結(jié)合思想、函數(shù)與方程思想、化歸與轉(zhuǎn)化思想,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

10.中國古代數(shù)學名草《周髀算經(jīng)》曾記載有“勾股各自乘,并而開方除之”,用符號表示為a2+b2=c2(a,b,c∈N*),我們把a,b,c叫做勾股數(shù).下列給出幾組勾股數(shù):3,4,5;5,12,13;7,24,25;9,40,41,以此類推,可猜測第5組股數(shù)的三個數(shù)依次是11,60,61.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如果一條信息有n(n>1,n∈N)種可能的情形(各種情形之間互不相容),且這些情形發(fā)生的概率分別為p1,p2,…,pn,則稱H=f(p1)+f(p2)+…f(pn)(其中f(x)=-xlogax,x∈(0,1))為該條信息的信息熵.已知$f(\frac{1}{2})=\frac{1}{2}$.
(1)若某班共有32名學生,通過隨機抽簽的方式選一名學生參加某項活動,試求“誰被選中”的信息熵的大;
(2)某次比賽共有n位選手(分別記為A1,A2,…,An)參加,若當k=1,2,…,n-1時,選手Ak獲得冠軍的概率為2-k,求“誰獲得冠軍”的信息熵H關(guān)于n的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.在△ABC中,D,E分別為BC,AB的中點,F(xiàn)為AD的中點,若$\overrightarrow{AB}•\overrightarrow{AC}=-1$,AB=2AC=2,則$\overrightarrow{CE}•\overrightarrow{AF}$的值為(  )
A.$\frac{3}{4}$B.$\frac{3}{8}$C.$\frac{1}{8}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.設(shè)(x2-3x+2)5=a0+a1x+a2x2+…+a10x10,則a1等于-240.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.若變量x,y滿足$\left\{\begin{array}{l}{2x-y-6≤0}\\{x-y+3≥0}\\{x≥1}\end{array}\right.$,目標函數(shù)z=2ax+by(a>0,b>0)取得最大值的是6,則$\frac{1}{a}+\frac{2}$的最小值為7+4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.若a>0,b>0,4a+b=ab.
(Ⅰ)求a+b的最小值;
(Ⅱ)當a+b取得最小值時,a,b的值滿足不等式|x-a|+|x-b|≥t2-2t對任意的x∈R恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的圖象過點B(0,-1),且在($\frac{π}{18}$,$\frac{π}{3}$)上單調(diào),同時f(x)的圖象向左平移π個單位之后與原來的圖象重合,當x1,x2∈(-$\frac{17π}{12}$,-$\frac{2π}{3}$),且x1≠x2時,f(x1)=f(x2),則f(x1+x2)=( 。
A.-$\sqrt{3}$B.-1C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.某銷售公司為了解員工的月工資水平,從1000位員工中隨機抽取100位員工進行調(diào)查,得到如下的頻率分布直方圖:
(1)試由此圖估計該公司員工的月平均工資;
(2)該公司工資發(fā)放是以員工的營銷水平為重要依據(jù)來確定的,一般認為,工資低于4500元的員工屬于學徒階段,沒有營銷經(jīng)驗,若進行營銷將會失;高于4500元的員工是具備營銷成熟員工,進行營銷將會成功.現(xiàn)將該樣本按照“學徒階段工資”、“成熟員工工資”分為兩層,進行分層抽樣,從中抽出5人,在這5人中任選2人進行營銷活動.活動中,每位員工若營銷成功,將為公司贏得3萬元,否則公司將損失1萬元,試問在此次比賽中公司收入多少萬元的可能性最大?

查看答案和解析>>

同步練習冊答案