如圖,已知Rt△ABC的兩條直角邊AC,BC的長分別為6cm,8cm,以AC為直徑的圓與AB交于點D,則AD=_________cm.  

 

【答案】

【解析】連接CD,則得到直角三角形ACD,然后利用切割線定理求解得到AD的長度為

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,已知Rt△ABC 中,AB=AC=
2
,AD是斜邊BC 上的高,以 AD為折痕,將△ABD折起,使∠BDC為直角.
(1)求證:平面ABD⊥平面BDC;
(2)求證:∠BAC=60°
(3)求點D到平面ABC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(A)(幾何證明選講選做題)如圖,已知Rt△ABC的兩條直角邊AC,BC的長分別為3cm,4cm,以AC為直徑作圓與斜邊AB交于點D,則BD的長為=
16
5
16
5

(B)(不等式選講選做題)關(guān)于x的不等式|x-1|+|x-2|≤a2+a+1的解集為空集,則實數(shù)a的取值范圍是
(-1,0)
(-1,0)

(C)(坐標系與參數(shù)方程選做題)已知極坐標的極點在直角坐標系的原點O處,極軸與x軸的正半軸重合,曲線C的參數(shù)方程為
x=3cosθ
y=sinθ
(θ為參數(shù)),直線l的極坐標方程為ρcos(θ-
π
3
)=6
.點P在曲線C上,則點P到直線l的距離的最小值為
6-
3
6-
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•汕頭二模)如圖,已知Rt△ABC的兩條直角邊AC,BC的長分別為3cm,4cm,以AC邊為直徑與AB交于點D,則三角形ACD的面積為
54
25
cm2
54
25
cm2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(考生注意:請在二題中任選一題作答,如果多做,則按所做的第一題評分)
(1)(幾何證明選做題)如圖,已知RT△ABC的兩條直角邊AC,BC的長分別為3cm,4cm,以AC為直徑的圓與AB交于點D,則
BD
DA
=
16
9
16
9

(2)(坐標系與參數(shù)方程選做題)已知圓C的圓心是直線
x=t
y=1+t
(t為參數(shù))與x軸的交點,且圓C與直線x+y+3=0相切.則圓C的方程為
(x+1)2+y2=2
(x+1)2+y2=2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•湖南模擬)選做題(請考生在第16題的三個小題中任選兩題作答,如果全做,則按前兩題記分,要寫出必要的推理與演算過程)
(1)如圖,已知Rt△ABC的兩條直角邊BC,AC的長分別為3cm,4cm,以AC為直徑作圓與斜邊AB交于點D,試求BD的長.
(2)已知曲線C的參數(shù)方程為
x=1+cosθ
y=sinθ
(θ為參數(shù)),求曲線C上的點到直線x-y+1=0的距離的最大值.
(3)若a,b是正常數(shù),a≠b,x,y∈(0,+∞),則
a2
x
+
b2
y
(a+b)2
x+y
,當且僅當
a
x
=
b
y
時上式取等號.請利用以上結(jié)論,求函數(shù)f(x)=
2
x
+
9
1-2x
(x∈0,
1
2
)的最小值.

查看答案和解析>>

同步練習冊答案