【題目】從某食品廠生產(chǎn)的面包中抽取個,測量這些面包的一項質量指標值,由測量結果得如下頻數(shù)分布表:
質量指標值分組 | |||||
頻數(shù) |
(1)在相應位置上作出這些數(shù)據(jù)的頻率分布直方圖;
(2)估計這種面包質量指標值的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(3)根據(jù)以上抽樣調查數(shù)據(jù),能否認為該食品廠生產(chǎn)的這種面包符合“質量指標值不低于的面包至少要占全部面包的規(guī)定?”
科目:高中數(shù)學 來源: 題型:
【題目】已知直線:,點.
(1)求點關于直線的對稱點的坐標;
(2)直線關于點對稱的直線的方程;
(3)以為圓心,3為半徑長作圓,直線過點,且被圓截得的弦長為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某幼兒園雛鷹班的生活老師統(tǒng)計2018年上半年每個月的20日的晝夜溫差,和患感冒的小朋友人數(shù)(/人)的數(shù)據(jù)如下:
溫差 | ||||||
患感冒人數(shù) | 8 | 11 | 14 | 20 | 23 | 26 |
其中,,.
(Ⅰ)請用相關系數(shù)加以說明是否可用線性回歸模型擬合與的關系;
(Ⅱ)建立關于的回歸方程(精確到),預測當晝夜溫差升高時患感冒的小朋友的人數(shù)會有什么變化?(人數(shù)精確到整數(shù))
參考數(shù)據(jù):.參考公式:相關系數(shù):,回歸直線方程是, ,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種產(chǎn)品的廣告費用支出與銷售額之間有如下的對應數(shù)據(jù):
2 | 4 | 5 | 6 | 8 | |
30 | 40 | 60 | 50 | 70 |
(1)畫出散點圖;
(2)求回歸直線方程;
(3)據(jù)此估計廣告費用為10時,銷售收入的值.
參考公式及數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)在同一個周期內(nèi),當時y取最大值1,當時,y取最小值﹣1.
(1)求函數(shù)的解析式y=f(x);
(2)函數(shù)y=sinx的圖象經(jīng)過怎樣的變換可得到y=f(x)的圖象?
(3)若函數(shù)f(x)滿足方程f(x)=a(0<a<1),求在[0,2π]內(nèi)的所有實數(shù)根之和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某研究機構對高三學生的記憶力x和判斷力y進行統(tǒng)計分析,得下表數(shù)據(jù):
x | 6 | 8 | 10 | 12 |
y | 2 | 3 | 5 | 6 |
(1)請在圖中畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程;
(3)試根據(jù)(2)求出的線性回歸方程,預測記憶力為9的同學的判斷力.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C的中心在原點,焦點在x軸上,以兩個焦點和短軸的兩個端點為頂點的四邊形是一個面積為8的正方形(記為Q).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設點P是直線x=﹣4與x軸的交點,過點P的直線l與橢圓C相交于M,N兩點,當線段MN的中點落在正方形Q內(nèi)(包括邊界)時,求直線l斜率的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com