精英家教網 > 高中數學 > 題目詳情
已知直線x=b交雙曲線
y2
a2
-
x2
b2
=1
(a>0,6>0)于A、B兩點,0為坐標原點,若∠AOB=60°,則此雙曲線的漸近線方程是( 。
A、y=±
6
x
B、y=±
6
6
x
C、y=±
2
x
D、y=±
2
2
x
分析:把x=b代入雙曲線
y2
a2
-
x2
b2
=1
 可求得A、B兩點的坐標,由 AO的斜率 tan30°=
3
3
=
2
a
b
,解得b2=6a2,從而求得此雙曲線的漸近線方程答案.
解答:解:由題意得,A、B兩點關于x軸對稱,設A在x軸的上方,把x=b代入雙曲線
y2
a2
-
x2
b2
=1

可求得A(b,
2
a
 ),B(b,-
2
a
 ),
∵∠AOB=60°,∴AO的傾斜角等于30°,∴AO的斜率tan30°=
3
3
=
2
a
b
,
∴b2=6a2,∴此雙曲線的漸近線方程是 y=±
a
b
x=±
6
6
x
,
故選 B.
點評:本題考查雙曲線的雙曲線的標準方程,以及雙曲線的簡單性質的應用,判斷AO的傾斜角等于30°是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•淮南二模)已知橢圓C:
x2
a2
+
y2
b2
=1,(a>b>0)與雙曲4x2-
4
3
y2=1有相同的焦點,且橢C的離心e=
1
2
,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(08年龍巖一中沖刺文)(分)已知雙曲線C的中心在原點,焦點在x軸上,右準線為一條漸近線的方程是過雙曲線C的右焦點F2的一條弦交雙曲線右支于P、Q兩點,R是弦PQ的中點.

   (1)求雙曲線C的方程;

   (2)若A、B分別是雙曲C上兩條漸近線上的動點,且2|AB|=|F1F2|,求線段AB的中點M的跡方程,并說明該軌跡是什么曲線。

   (3)若在雙曲線右準線L的左側能作出直線m:x=a,使點R在直線m上的射影S滿足,當點P在曲線C上運動時,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知焦點在x軸上的雙曲線C的兩條漸近線過坐標原點,且兩條漸近線與以點A (0,)為圓心,1為半徑的圓相切,又知C的一個焦點與A關于y = x對稱.

    (1)求雙曲線C的方程;

    (2)若Q是雙曲線線C上的任一點,F1,F2為雙曲線C的左、右兩個焦點,從F1引∠F1QF2的平分線的垂線,垂足為N,試求點N的軌跡方程;

    (3)設直線y = mx + 1與雙曲線C的左支交于A、B兩點,另一直線l經過M (–2,0)及AB的中點,求直線ly軸上的截距b的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年河南省安陽二中高三(上)期中數學試卷(理科)(解析版) 題型:選擇題

已知雙曲=1,過其右焦點F的直線(斜率存在)交雙曲線于P、Q兩點,PQ的垂直平分線交x軸于點M,則的值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源:2012年安徽省淮南市高考數學二模試卷(理科)(解析版) 題型:解答題

已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點,且橢C的離心e=,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

同步練習冊答案