【題目】設等差數(shù)列{an}滿足a35,a10=-9.

(1){an}的通項公式;

(2){an}的前n項和Sn及使得Sn最大的序號n的值.

【答案】1 2 時, 取得最大值

【解析】試題分析:(1)設出首項和公差,根據(jù)a35a10=-9,列出關于首項和公差的二元一次方程組,解方程組得到首項和公差,寫出通項.(2)由上面得到的首項和公差,寫出數(shù)列{an}的前n項和,整理成關于n的一元二次函數(shù),二次項為負數(shù)求出最值

試題解析:(1)由ana1+(n1da35,a10=-9

可解得

所以數(shù)列{an}的通項公式為an112n

2)由(1)知,

Snna1d10nn2

因為Sn=-(n5225,

所以當n5時,Sn取得最大值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知{an}是各項均為正數(shù)的數(shù)列,{bn}是等差數(shù)列,且a1=b1=1,a5﹣3b2=7.2a +(2﹣an+1)an﹣an+1=0(n∈N*
(1)求{an}和{bn}的通項公式;
(2)設cn=anbn , n∈N* , 求數(shù)列{cn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用分期付款的方式購買某家用電器一件,價格為1 150元,購買當天先付150元,以后每月這一天還款一次,每次還款數(shù)額相同,20個月還清,月利率為1%,按復利計算.若交付150元后的第一個月開始算分期付款的第一個月,全部欠款付清后,請問買這件家電實際付款多少元?每月還款多少元?(最后結(jié)果保留4個有效數(shù)字)

參考數(shù)據(jù):(1+1%)19=1.208,(1+1%)20=1.220,(1+1%)21=1.232.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}滿足a3=2,前3項和為S3.

(1)求{an}的通項公式;

(2)設等比數(shù)列{bn}滿足b1a1,b4a15,求{bn}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知袋中裝有大小相同的2個白球、2個紅球和1個黃球.一項游戲規(guī)定:每個白球、紅球和黃球的分值分別是0分、1分和2分,每一局從袋中一次性取出三個球,將3個球?qū)姆种迪嗉雍蠓Q為該局的得分,計算完得分后將球放回袋中.當出現(xiàn)第局得分()的情況就算游戲過關,同時游戲結(jié)束,若四局過后仍未過關,游戲也結(jié)束.

(1)求在一局游戲中得3分的概率;

(2)求游戲結(jié)束時局數(shù)的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中, , 兩點的坐標分別為, ,動點滿足:直線與直線的斜率之積為

(Ⅰ)求動點的軌跡的方程;

(Ⅱ)過點作兩條互相垂直的直線, 分別交曲線, 兩點,設的斜率為),的面積為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中, 分別是、的中點, 平面 ,二面角.

(1)證明:

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

(1)若,求曲線處的切線方程;

(2)若當時, ,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,有下列說法:
①若f(a)f(b)>0,則函數(shù)y=f(x)在區(qū)間(a,b)上沒有零點;
②若f(a)f(b)>0,則函數(shù)y=f(x)在區(qū)間(a,b)上可能有零點;
③若f(a)f(b)<0,則函數(shù)y=f(x)在區(qū)間(a,b)上沒有零點;
④若f(a)f(b)<0,則函數(shù)y=f(x)在區(qū)間(a,b)上至少有一個零點;
其中正確說法的序號是(把所有正確說法的序號都填上).

查看答案和解析>>

同步練習冊答案