【題目】設函數(shù).
(1)若,求曲線在處的切線方程;
(2)若當時, ,求的取值范圍.
【答案】(Ⅰ);(Ⅱ).
【解析】試題分析: (1)由已知條件求出,由點斜式求出切線方程; (2)構(gòu)造函數(shù) ,由 ,通過轉(zhuǎn)化為證明 在 上為增函數(shù),求出的范圍.
試題解析:(Ⅰ)當時, ,
則,所以,
又,所以曲線在處的切線方程為.,即.
(Ⅱ)由得,而,
所以,設函數(shù),
于是問題 轉(zhuǎn)化為,對任意的恒成立.
注意到,所以若,則單調(diào)遞增,
從而.而,
所以等價于,
分離參數(shù)得,
由均值不等式可得,
當且僅當時等號成立,于是.
當時,設,
因為,又拋物線開口向上,
所以函數(shù)有兩個零點,
設兩個零點為,則,
于是當時, ,故,所以單調(diào)遞減,故,這與題設矛盾,不合題意.
綜上, 的取值范圍是.
點睛:本題主要考查了導數(shù)的幾何意義及恒成立問題轉(zhuǎn)化為求函數(shù)的最小值,屬于中檔題.在(1)中,導數(shù)的幾何意義是函數(shù)在某一點處切線的斜率,所以本題求切線方程是容易題;在(2)中,注意等價轉(zhuǎn)化,轉(zhuǎn)化為求函數(shù)在上為增函數(shù),分離出參數(shù),求 的最大值.得到的范圍.
科目:高中數(shù)學 來源: 題型:
【題目】為了降低能源消耗,某冷庫內(nèi)部要建造可供使用20年的隔熱層,每厘米厚的隔熱層建造成本為4萬元,又知該冷庫每年的能源消耗費用(單位:萬元)與隔熱層厚度(單位: )滿足關系,若不建隔熱層,每年能源消耗為8萬元.設為隔熱層建造費用與20年的能源消耗費用之和.
(1)求的值及的表達式;
(2)隔熱層修建多厚時,總費用達到最?并求最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù).當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時.研究表明:當時,車流速度是車流密度的一次函數(shù).
(1)當時,求函數(shù)的表達式;
(2)當車流密度為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)可以達到最大,并求出最大值.(精確到1輛/小時)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列程序運行后,a,b,c的值各等于什么?
(1)_____________________________________________________________.
(2)_____________________________________________________________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將圓上每一點的縱坐標不變,橫坐標變?yōu)樵瓉淼?/span>,得曲線C.
(Ⅰ)寫出C的參數(shù)方程;
(Ⅱ)設直線l: 與C的交點為P1,P2,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,求過線段P1 P2的中點且與l垂直的直線的極坐標方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列, 滿足, ,且, .
(1)求及;
(2)猜想, 的通項公式,并證明你的結(jié)論;
(3)證明:對所有的, .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
⑴求函數(shù)的單調(diào)區(qū)間;
⑵如果對于任意的, 恒成立,求實數(shù)的取值范圍;
⑶設函數(shù), .過點作函數(shù)的圖象
的所有切線,令各切點的橫坐標構(gòu)成數(shù)列,求數(shù)列的所有項之和的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的離心率,且過點.
(1)求橢圓的方程;
(2)如圖,過橢圓的右焦點作兩條相互垂直的直線交橢圓分別于,且滿足, ,求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com