如圖,空間四邊形ABCD中,E,F(xiàn),G,H分別是直線AB,BC,CD,DA上的點,如果EF∩GH=Q,則點Q在直線( 。┥希
分析:利用線面位置關(guān)系即可知道分別在兩個相交平面的兩相交直線的交點必在兩平面的交線上.
解答:解:如圖所示:
∵EF?平面ABC,GH?平面ACD,平面ABC∩平面ACD=AC,
∴EF∩GH=Q必在直線AC上.
故選C.
點評:正確理解線面位置關(guān)系是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,空間四邊形ABCD中,M、G分別是BC、CD的中點,則
AB
+
1
2
BC
+
1
2
BD
等( 。
A、
AD
B、
GA
C、
AG
D、
MG

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,空間四邊形ABCD的對棱AD、BC成60°的角,且AD=BC=4,平行于AD與BC的截面分別交AB、AC、CD、BD于E、F、G、H.
(1)求證:四邊形EFGH為平行四邊形;
(2)E在AB的何處時截面EFGH的面積最大?最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,空間四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點.
(1)求證:四邊形EGGH是平行四邊形.
(2)求證:EF∥平面ADC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,空間四邊形ABCD中,AB、BC、CD的中點分別是P、Q、R,且PQ=
3
,QR=1,PR=2
,那么異面直線BD和PR所成的角是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,空間四邊形ABCD中,E、F分別是AB、AD的中點,G、H分別在BC、CD上,且BG:GC=DH:HC=1:2
(1)求證:E、F、G、H四點共面.
(2)設(shè)EG與HF交于點P,求證:P、A、C三點共線.

查看答案和解析>>

同步練習冊答案