【題目】隨著經(jīng)濟(jì)全球化、信息化的發(fā)展,企業(yè)之間的競(jìng)爭從資源的爭奪轉(zhuǎn)向人才的競(jìng)爭,吸引、留住培養(yǎng)和用好人才成為人力資源管理的戰(zhàn)略目標(biāo)和緊迫任務(wù),在此背景下,某信息網(wǎng)站在15個(gè)城市中對(duì)剛畢業(yè)的大學(xué)生的月平均收入薪資和月平均期望薪資做了調(diào)查,數(shù)據(jù)如下圖所示.

1)若某大學(xué)畢業(yè)生從這15座城市中隨機(jī)選擇一座城市就業(yè),求該生選中月平均收入薪資高于8500元的城市的概率;

2)現(xiàn)有2名大學(xué)畢業(yè)生在這15座城市中各隨機(jī)選擇一座城市就業(yè),且2人的選擇相互獨(dú)立,記X為選中月平均收入薪資高于8500元的城市的人數(shù),求X的分布列和數(shù)學(xué)期望EX);

3)記圖中月平均收入薪資對(duì)應(yīng)數(shù)據(jù)的方差為,月平均期望薪資對(duì)應(yīng)數(shù)據(jù)的方差為,判斷的大。ㄖ恍鑼懗鼋Y(jié)論)

【答案】1;(2)分布列見解析,;(3

【解析】

1)根據(jù)圖表得到高于8500元的城市有6座,得到答案.

2的可能取值為,計(jì)算概率得到分布列,再計(jì)算期望得到答案.

3)根據(jù)數(shù)據(jù)的波動(dòng)性得到答案.

1)根據(jù)圖表知:月平均收入薪資高于8500元的城市有6座,故

2的可能取值為,則

;

分布列為:

0

1

2

3)根據(jù)圖像知月平均收入薪資對(duì)應(yīng)數(shù)據(jù)波動(dòng)更大,故

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)|xm||2x1|.

(1)當(dāng)m=-1時(shí),求不等式f(x)≤2的解集;

(2)f(x)≤|2x1|的解集包含,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某醫(yī)院體檢中心為回饋大眾,推出優(yōu)惠活動(dòng):對(duì)首次參加體檢的人員,按200元次收費(fèi),并注冊(cè)成為會(huì)員,對(duì)會(huì)員的后續(xù)體檢給予相應(yīng)優(yōu)惠,標(biāo)準(zhǔn)如下:

體檢次序

第一次

第二次

第三次

第四次

第五次及以上

收費(fèi)比例

1

0.95

0.90

0.85

0.8

該體檢中心從所有會(huì)員中隨機(jī)選取了100位對(duì)他們?cè)诒局行膮⒓芋w檢的次數(shù)進(jìn)行統(tǒng)計(jì),得到數(shù)據(jù)如下表:

體檢次數(shù)

一次

兩次

三次

四次

五次及以上

頻數(shù)

60

20

10

5

5

假設(shè)該體檢中心為顧客體檢一次的成本費(fèi)用為150元,根據(jù)所給數(shù)據(jù),解答下列問題:

1)該體檢中心要從這100人里至少體檢3次的會(huì)員中,按體檢次數(shù)用分層抽樣的方法抽出8人,再從這8人中抽出2人發(fā)放紀(jì)念品,求抽出的2人中恰有1人體檢3次的概率;

2)若以這100位會(huì)員體檢次數(shù)的頻率分布估計(jì)該體檢中心所有會(huì)員體檢次數(shù)的概率分布,已知該中心本周共接待了1000名顧客參加體檢,試估計(jì)該體檢中心本周所獲利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓的右頂點(diǎn)為,過點(diǎn)作直線與圓相切,與橢圓交于另一點(diǎn),與右準(zhǔn)線交于點(diǎn).設(shè)直線的斜率為.

1)用表示橢圓的離心率;

2)若,求橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在棱長為1的正方體中,E,F(xiàn)分別為線段CD和上的動(dòng)點(diǎn),且滿足,則四邊形所圍成的圖形(如圖所示陰影部分)分別在該正方體有公共頂點(diǎn)的三個(gè)面上的正投影的面積之和(  )

A. 有最小值B. 有最大值C. 為定值3D. 為定值2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為F,點(diǎn)P為拋物線C上一點(diǎn),,O為坐標(biāo)原點(diǎn),.

1)求拋物線C的方程;

2)設(shè)Q為拋物線C的準(zhǔn)線上一點(diǎn),過點(diǎn)F且垂直于OQ的直線交拋物線CA,B兩點(diǎn)記,的面積分別為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1) 討論的單調(diào)性;

(2) 設(shè),當(dāng)時(shí), ,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,四邊形是邊長為2的正方形,,的中點(diǎn),點(diǎn)上,平面,的延長線上,且.

(1)證明:平面.

(2)過點(diǎn)的平行線,與直線相交于點(diǎn),點(diǎn)的中點(diǎn),求到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)三棱錐的每個(gè)頂點(diǎn)都在球的球面上,是面積為的等邊三角形,,且平面平面.

1)確定的位置(需要說明理由),并證明:平面平面.

2)與側(cè)面平行的平面與棱,分別交于,,求四面體的體積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案