19.已知a>0,且a≠1,函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x+3,x≤2}\\{1+lo{g}_{a}x,x>2}\end{array}\right.$存在最小值,則f(2a)的取值范圍為[3,+∞).

分析 討論當(dāng)x≤2時(shí),運(yùn)用二次函數(shù)的最值求法,可得最小值;再由當(dāng)x>2時(shí),討論0<a<1,a>1,由單調(diào)性,結(jié)合題意,可得1+loga2≥2,解方程可得a的范圍,結(jié)合對(duì)數(shù)函數(shù)的單調(diào)性,計(jì)算即可得到所求范圍.

解答 解:當(dāng)x≤2時(shí),f(x)=x2-2x+3=(x-1)2+2,
當(dāng)且僅當(dāng)x=1時(shí),f(x)取得最小值2;
當(dāng)x>2時(shí),若0<a<1,則f(x)<1+loga2<2,顯然不滿足題意;
若a>1,要使f(x)存在最小值,必有1+loga2≥2,
解得1<a≤2.
即2<2a≤4,
f(2a)=1+loga(2a)=2+loga2=2+$\frac{1}{lo{g}_{2}a}$,
由0<log2a≤1,可得$\frac{1}{lo{g}_{2}a}$≥1,
可得f(2a)≥3,
故答案為:[3,+∞).

點(diǎn)評(píng) 本題考查分段函數(shù)的最值問題的解法,考查分類討論思想方法,以及對(duì)數(shù)函數(shù)的單調(diào)性的應(yīng)用,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知隨機(jī)變量X的分布列為P(X=i)=$\frac{i}{3a}$(i=1,2,3,4,5),則P(1<X<4)等于(  )
A.$\frac{1}{3}$B.$\frac{3}{5}$C.$\frac{5}{3a}$D.$\frac{9}{3a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.用數(shù)學(xué)歸納法證明“(n+1)(n+2)…(n+n)=2n•1•2•…•(2n-1)”(n∈N+)時(shí),從“n=k到n=k+1”時(shí),左邊應(yīng)增添的式子是(  )
A.2k+1B.2(2k+1)C.$\frac{2k+1}{k+1}$D.$\frac{2k+2}{k+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某校高二學(xué)生參加社會(huì)實(shí)踐活動(dòng),分乘3輛不同的巴士,共有5名帶隊(duì)教師,要求每車至少有一名帶隊(duì)教師,則不同的分配方案有( 。
A.90種B.150種C.180種D.240種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.執(zhí)行如圖所示的程序框圖,輸出的T的值為(  )
A.12B.17C.20D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在底面為矩形的四棱椎P-ABCD中,PB⊥AB.
(1)證明:平面PBC⊥平面PCD;
(2)若異面直線PC與BD所成角為60°,PB=AB,PB⊥BC,求二面角B-PD-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若x為銳角,且$\frac{tanx+1}{tanx-1}$=3,則cosx=$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=1nx-a(x-1),g(x)=x-ex-1,曲線y=f(x)與y=g(x)在x=1處的切線相同.
(1)求f(x)的單調(diào)區(qū)間;
(2)若x≥1時(shí),g(x)≤kf(x)恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若集合A={x||3x-1|≥4},B={x|$\frac{2x+1}{x-1}$<1},則集合A∩B=( 。
A.(-2,-1]B.C.[-1,1)D.(-2,-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案