10.用數(shù)學(xué)歸納法證明“(n+1)(n+2)…(n+n)=2n•1•2•…•(2n-1)”(n∈N+)時(shí),從“n=k到n=k+1”時(shí),左邊應(yīng)增添的式子是( 。
A.2k+1B.2(2k+1)C.$\frac{2k+1}{k+1}$D.$\frac{2k+2}{k+1}$

分析 分別寫出n=k和n=k+1時(shí)式子的左邊即可得出增添的項(xiàng).

解答 解:當(dāng)n=k時(shí),式子左邊為(k+1)(k+2)…(k+k),
當(dāng)n=k+1時(shí),式子左邊為(k+2)(k+3)…(k+k)(2k+1)(2k+2),
∴n=k到n=k+1”時(shí),左邊應(yīng)增添的式子是$\frac{(2k+1)(2k+2)}{k+1}$=2(2k+1),
故選B.

點(diǎn)評 本題考查了數(shù)學(xué)歸納法的步驟,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.甲、乙、丙、丁四位同學(xué)被問到是否游覽過西岳華山時(shí),回答如下:甲說:我沒去過;乙說:丙游覽過;丙說:丁游覽過;丁說:我沒游覽過.在以上的回答中只有一人回答錯(cuò)誤且只有一人游覽過華山,根據(jù)以上條件,可以判斷游覽過華山的人是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖是計(jì)算1$+\frac{1}{3}$$+\frac{1}{5}$$+…+\frac{1}{19}$的值的程序框圖,則圖中①、②處應(yīng)填寫的語句分別是( 。
A.n=n+2,i>10?B.n=n+2,i≥10?C.n=n+1,i>10?D.n=n+1,i≥10?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)與函數(shù)g(x)=k(x-k)+6的部分圖象如圖所示,直線y=A與g(x)圖象相交于y軸,與f(x)相切于點(diǎn)N,向量$\overrightarrow{MN}$在x軸上投影的數(shù)量為-$\frac{3π}{4}$且A+ω=2k,則函數(shù)h(x)=sin(ωx-φ)+cos(ωx-φ)圖象的一條對稱軸的方程可以為(  )
A.$\frac{11π}{-24}$B.$\frac{11π}{24}$C.$\frac{13π}{-24}$D.$\frac{7π}{24}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在數(shù)列{an}中,已知a1=1,an+1=an+3n,則a4=19,an=$\frac{3{n}^{2}}{2}-\frac{3n}{2}+1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.從正方體的6個(gè)面中,任取2個(gè)面,則這2個(gè)面相交的概率為( 。
A.$\frac{1}{5}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a3=3,S7=28,在等比數(shù)列{bn}中,b3=4,b4=8.
(1)求an及bn;
(2)設(shè)數(shù)列{anbn}的前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知a>0,且a≠1,函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x+3,x≤2}\\{1+lo{g}_{a}x,x>2}\end{array}\right.$存在最小值,則f(2a)的取值范圍為[3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.觀察下列不等式:
(1)1≤sin2α+cos2α≤1
(2)$\frac{1}{2}$≤sin4α+cos4α≤1
(3)$\frac{1}{4}$≤sin6α+cos6α≤1

由此規(guī)律推測,第n個(gè)不等式為:$\frac{1}{{2}^{n-1}}$≤sin2nα+cos2nα≤1.

查看答案和解析>>

同步練習(xí)冊答案