分析 (1)由正弦定理得:(2sinC-sinA)cosB=sinB(cosA-2cosC),從而2sinA=sinC,由此能求出$\frac{a}{c}$的值.
(2)由cosB=$\frac{1}{4}$,得sinB=$\frac{\sqrt{15}}{4}$,由余弦定理得b2=a2+c2-2accosB,從而求出a=1,c=2,由此能求出△ABC的面積.
解答 解:(1)∵在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,
(2c-a)cosB=b(cosA-2cosC),
∴由正弦定理得:(2sinC-sinA)cosB=sinB(cosA-2cosC),
化簡(jiǎn),得2sin(C+B)=sin(A+B),
∵A+B+C=π,∴2sinA=sinC,
∴2a=c,∴$\frac{a}{c}=\frac{1}{2}$.
(2)∵cosB=$\frac{1}{4}$,∴sinB=$\frac{\sqrt{15}}{4}$,
由余弦定理得b2=a2+c2-2accosB,
又b=2,∴$4={a}^{2}+4{a}^{2}-4{a}^{2}×\frac{1}{4}$,
解得a=1,c=2,
∴${S}_{△ABC}=\frac{1}{2}acsinB=\frac{\sqrt{15}}{4}$.
點(diǎn)評(píng) 本題考查三角形中兩線段的比值的求法,考查三角形面積的求法,考查正弦定理、余弦定理、同角三角函數(shù)關(guān)系式等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{7}$ | B. | $\frac{1}{2}$ | C. | $\frac{5}{8}$ | D. | $\frac{5}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 奇函數(shù) | B. | 偶函數(shù) | ||
C. | 非奇非偶函數(shù) | D. | 既是奇函數(shù)又是偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6種 | B. | 8種 | C. | 9種 | D. | 12種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=1-sinx | B. | y=1+sinx | C. | y=1-cosx | D. | y=1+cosx |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com