【題目】已知等差數(shù)列{an}前n項和為Sn , 且 (n∈N*).
(Ⅰ) 求c,an
(Ⅱ) 若 ,求數(shù)列{bn}前n項和Tn

【答案】(Ⅰ)∵ , ∴a1=S1=1+c,a2=S2﹣S1=(4+c)﹣(1+c)=3,a3=S3﹣S2=5
又∵{an}等差數(shù)列,∴6+c=6,c=0;
d=3﹣1=2;a1=S1=1+c=1,
∴an=1+2(n﹣1)=2n﹣1
(Ⅱ)
…①
…②
①﹣②得



【解析】(Ⅰ)利用數(shù)列遞推關(guān)系、等差數(shù)列的通項公式即可得出.(Ⅱ)利用“錯位相減法”與等比數(shù)列的求和公式即可得出.
【考點精析】本題主要考查了數(shù)列的前n項和的相關(guān)知識點,需要掌握數(shù)列{an}的前n項和sn與通項an的關(guān)系才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=cos(ωx+φ)(ω>0),f'(x)是f(x)的導函數(shù),若f(α)=0,f'(α)>0,且f(x)在區(qū)間[α, +α)上沒有最小值,則ω取值范圍是(
A.(0,2)
B.(0,3]
C.(2,3]
D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】據(jù)統(tǒng)計,某地區(qū)植被覆蓋面積公頃與當?shù)貧鉁叵陆档亩葦?shù)之間呈線性相關(guān)關(guān)系,對應(yīng)數(shù)據(jù)如下:

公頃

20

40

60

80

3

4

4

5

請用最小二乘法求出y關(guān)于x的線性回歸方程;

根據(jù)中所求線性回歸方程,如果植被覆蓋面積為300公頃,那么下降的氣溫大約是多少

參考公式:線性回歸方程;其中,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了更好地了解鯨的生活習性,某動物保護組織在受傷的鯨身上安裝了電子監(jiān)測設(shè)備,從海岸線放歸點處把它放歸大海,并沿海岸線由西到東不停地對其進行跟蹤觀測。在放歸點的正東方向有一觀測站,可以對鯨進行生活習性的詳細觀測。已知,觀測站的觀測半徑為.現(xiàn)以點為坐標原點、以由西向東的海岸線所在直線為軸建立平面直角坐標系,則可以測得鯨的行進路線近似的滿足.

(1)若測得鯨的行進路線上一點,的值;

(2)在(1)問的條件下,問:

當鯨運動到何處時,開始進入觀測站的觀測區(qū)域內(nèi)?(計算結(jié)果精確到0.1)

當鯨運動到何處時,離觀測站距離最近觀測最便利)?(計算結(jié)果精確到0.1)

(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓)和圓,已知圓將橢圓的長軸三等分,橢圓右焦點到右準線的距離為,橢圓的下頂點為,過坐標原點且與坐標軸不重合的任意直線與圓相交于點

(1)求橢圓的方程;

(2)若直線分別與橢圓相交于另一個交點為點、.

①求證:直線經(jīng)過一定點;

②試問:是否存在以為圓心,為半徑的圓,使得直線和直線都與圓相交?若存在,請求出實數(shù)的范圍;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣ax2(a∈R)
(Ⅰ) 討論f(x)的單調(diào)性;
(Ⅱ) 若對于x∈(0,+∞),f(x)≤a﹣1恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為橢圓的右焦點,點上,且軸.

(1)求的方程

(2)過的直線兩點,交直線于點.證明:直線的斜率成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)=cos(x+ ),則下列結(jié)論錯誤的是( )
A.f(x)的一個周期為﹣2π
B.y=f(x)的圖象關(guān)于直線x= 對稱
C.f(x+π)的一個零點為x=
D.f(x)在( ,π)單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱中,,,分別是的中點.

(1)證明:平面平面;

(2)求三棱錐的高.

查看答案和解析>>

同步練習冊答案