【題目】已知橢圓的離心率為,短軸長為.

(1)求橢圓的方程;

(2)設(shè) 是橢圓上關(guān)于軸對稱的任意兩個不同的點,連接交橢圓于另一點,證明直線軸相交于定點;

(3)在(2)的條件下,過點的直線與橢圓交于, 兩點,求的取值范圍.

【答案】(1) .(2) 見解析.(3) .

【解析】試題分析:利用橢圓的定義和性質(zhì)求出, ,即可求出橢圓的方程;⑵由題意知直線的斜率存在,設(shè)直線的方程為,由,再由根與系數(shù)的關(guān)系證明直線軸相交于定點;的斜率存在與不存在兩種情況討論,與橢圓方程聯(lián)立得出點的坐標(biāo)之間的關(guān)系,再表示出,進(jìn)而可求出其取值范圍;

解析:(1)由題意知

又∵,∴,∴,

,得,故橢圓的方程為.

(2)由題意知直線的斜率存在,設(shè)直線的方程為

.①

設(shè)點, ,則,

直線的方程為,

,得,將 代入,

整理,得.②

由①得, 代入②整理,得.

∴直線軸相交于定點.

(3)當(dāng)過點直線的斜率存在時,設(shè)直線的方程為

, 在橢圓上,

,易知

, ,

,

,∴,

當(dāng)過點直線的斜率不存在時,其方程為,

解得, , .

此時,∴的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】10四面體ABCD及其三視圖如圖所示,平行于棱ADBC的平面分別交四面體的棱AB,BDDC,CA于點EF,GH

1求四面體ABCD的體積;

2證明四邊形EFGH是矩形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】活水圍網(wǎng)養(yǎng)魚技術(shù)具有養(yǎng)殖密度高、經(jīng)濟(jì)效益好的特點.研究表明:活水圍網(wǎng)養(yǎng)魚時,某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù).當(dāng)不超過/立方米時, 的值為千克/年;當(dāng)時, 的一次函數(shù),且當(dāng)時,

)當(dāng)時,求關(guān)于的函數(shù)的表達(dá)式.

)當(dāng)養(yǎng)殖密度為多大時,每立方米的魚的年生長量(單位:千克/立方米)可以達(dá)到最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點列An(an , bn)(n∈N*)均為函數(shù)y=ax(a>0,a≠1)的圖象上,點列Bn(n,0)滿足|AnBn|=|AnBn+1|,若數(shù)列{bn}中任意連續(xù)三項能構(gòu)成三角形的三邊,則a的取值范圍為( )
A.(0, )∪( ,+∞)
B.( ,1)∪(1,
C.(0, )∪( ,+∞)
D.( ,1)∪(1,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓C: + =1(a>b>0)的離心率是 ,且過點( , ).設(shè)點A1 , B1分別是橢圓的右頂點和上頂點,如圖所示過 點A1 , B1引橢圓C的兩條弦A1E、B1F.

(1)求橢圓C的方程;
(2)若直線A1E與B1F的斜率是互為相反數(shù).
①求直線EF的斜率k0②設(shè)直線EF的方程為y=k0x+b(﹣1≤b≤1)設(shè)△A1EF、△B1EF的面積分別為S1和S2 , 求S1+S2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U={1,2,3,4,5,6,7},集合A={1,3,7},B={x|x=log2(a+1),a∈A},則A∩B=(
A.{1,3}
B.{5,6}
C.{4,5,6}
D.{4,5,6,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , Sn=n2+2n,bn=anan+1cos(n+1)π,數(shù)列{bn} 的前n項和為Tn , 若Tn≥tn2對n∈N*恒成立,則實數(shù)t的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以平面直角坐標(biāo)系的原點為極點, 軸正半軸為極軸建立極坐標(biāo)系已知圓的極坐標(biāo)方程為,直線的參數(shù)方程為為參數(shù)),若交于兩點.

(Ⅰ)求圓的直角坐標(biāo)方程

(Ⅱ)設(shè),的值.

【答案】(1);(2)1.

【解析】試題分析:(1)先根據(jù) 將圓的極坐標(biāo)方程化為直角坐標(biāo)方程(2)先將直線參數(shù)方程調(diào)整化簡,再將直線參數(shù)方程代入圓直角坐標(biāo)方程,根據(jù)參數(shù)幾何意義得,最后利用韋達(dá)定理求解

試題解析:(Ⅰ)由,得

(Ⅱ)把,

代入上式得,

,則,

.

型】解答
結(jié)束】
23

【題目】證明:(Ⅰ)已知是正實數(shù),.求證 ;

(Ⅱ)已知, , .求證 中至少有一個是負(fù)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點是圓上任意一點,點與點關(guān)于原點對稱,線段的垂直平分線與交于.

(1)求點的軌跡的方程;

(2)過點的動直線與點的軌跡交于兩點,在軸上是否存在定點使以為直徑的圓恒過這個點?若存在,求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案