【題目】(10分)四面體ABCD及其三視圖如圖所示,平行于棱AD,BC的平面分別交四面體的棱AB,BD,DC,CA于點E,F,G,H.
(1)求四面體ABCD的體積;
(2)證明:四邊形EFGH是矩形.
【答案】(1);(2)詳見解析
【解析】
試題分析:(Ⅰ)證明AD⊥平面BDC,即可求四面體ABCD的體積;(Ⅱ)證明四邊形EFGH是平行四邊形,EF⊥HG,即可證明四邊形EFGH是矩形
試題解析:(1)由該四面體的三視圖可知,
BD⊥DC,BD⊥AD,AD⊥DC,
BD=DC=2,AD=1,
∴AD⊥平面BDC.
∴四面體體積
V=××2×2×1=
(2)證明:∵BC∥平面EFGH,
平面EFGH∩平面BDC=FG,
平面EFGH∩平面ABC=EH,
∴BC∥FG,BC∥EH.∴FG∥EH.
同理EF∥AD,HG∥AD,
∴EF∥HG.
∴四邊形EFGH是平行四邊形.
又∵AD⊥平面BDC,
∴AD⊥BC.∴EF⊥FG.
∴四邊形EFGH是矩形.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ均為正的常數(shù))的最小正周期為π,當x= 時,函數(shù)f(x)取得最小值,則下列結(jié)論正確的是( )
A.f(2)<f(﹣2)<f(0)
B.f(0)<f(2)<f(﹣2)
C.f(﹣2)<f(0)<f(2)
D.f(2)<f(0)<f(﹣2)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣mx+m,m∈R.
(1)已知函數(shù)f(x)在點(l,f(1))處與x軸相切,求實數(shù)m的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)在(1)的結(jié)論下,對于任意的0<a<b,證明: < ﹣1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義max{a,b}表示實數(shù)a,b中的較大的數(shù).已知數(shù)列{an}滿足a1=a(a>0),a2=1,an+2= (n∈N),若a2015=4a,記數(shù)列{an}的前n項和為Sn , 則S2015的值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O為底面中心, A1O⊥平面ABCD,.
(1)證明: A1BD // 平面CD1B1;
(2)求三棱柱ABD-A1B1D1的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,上頂點為,焦點為,點是橢圓上異于點的不同的兩點,且滿足直線與直線斜率之積為.
(1)若為橢圓上不同于長軸端點的任意一點,求面積的最大值;
(2)試判斷直線是否過定點;若是,求出定點坐標;若否,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,短軸長為.
(1)求橢圓的方程;
(2)設, 是橢圓上關(guān)于軸對稱的任意兩個不同的點,連接交橢圓于另一點,證明直線與軸相交于定點;
(3)在(2)的條件下,過點的直線與橢圓交于, 兩點,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com