分析 (1)利用兩角和差的正弦公式化簡函數f(x )的解析式,令2x-$\frac{π}{3}$=kπ,x=$\frac{kπ}{2}$+$\frac{π}{6}$(k∈Z),求函數f(x)的對稱中心坐標;
(2)由2kπ-$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,得kπ-$\frac{π}{12}$≤x≤kπ+$\frac{5π}{12}$,求得x的范圍即為增區(qū)間,由2kπ+$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,得kπ+$\frac{5π}{12}$≤x≤kπ+$\frac{11π}{12}$,求得x的范圍即為減區(qū)間.
解答 解:(1)f(x)=2sinxcosx-2$\sqrt{3}$cos2x+$\sqrt{3}$=sin2x-$\sqrt{3}$cos2x=2sin(2x-$\frac{π}{3}$),
令2x-$\frac{π}{3}$=kπ,x=$\frac{kπ}{2}$+$\frac{π}{6}$(k∈Z),
∴函數f(x)的對稱中心坐標是($\frac{kπ}{2}$+$\frac{π}{6}$,0)(k∈Z);
(2)由2kπ-$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,得kπ-$\frac{π}{12}$≤x≤kπ+$\frac{5π}{12}$
∴函數f(x)的單調增區(qū)間是[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z);
2kπ+$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,得kπ+$\frac{5π}{12}$≤x≤kπ+$\frac{11π}{12}$
∴函數f(x)的單調增區(qū)間是[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$](k∈Z).
點評 本題考查兩角和差的正弦公式的應用,正弦函數的單調性、對稱性,把函數f(x)的解析式化為f(x)=2sin(2x-$\frac{π}{3}$)是解題的突破口,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | a2+b2<c2 | B. | b2+c2<a2 | C. | 2ab>c2 | D. | 2bc>a2 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | c<b<a | B. | b<a<c | C. | c<a<b | D. | a<c<b |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com