【題目】下列命題中正確命題的個數(shù)是( ) ①對于命題p:x∈R,使得x2+x+1<0,則¬p:x∈R,均有x2+x+1>0;
②命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題;
③回歸直線的斜率的估計值為1.23,樣本點的中心為(4,5),則回歸直線方程為 =1.23x+0.08;
④m=3是直線(m+3)x+my﹣2=0與直線mx﹣6y+5=0互相垂直的充要條件.
A.1
B.3
C.2
D.4

【答案】C
【解析】解:①命題p:x∈R,使得x2+x+1<0,則¬p:x∈R,均有x2+x+1≥0,故①錯誤;②命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”的逆否命題為:“已知x,y∈R,若x=2且y=1,則x+y=3”是真命題,

∴命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題,故②正確;③設(shè)回歸直線方程為 =1.23x+a,把樣本點的中心(4,5)代入,得a=5﹣1.23×4=0.08,則回歸直線方程為 =1.23x+0.08,故③正確;④由m(m+3)﹣6m=0,得m=0或m=3,∴m=3是直線(m+3)x+my﹣2=0與直線mx﹣6y+5=0互相垂直的充分不必要條件,故④錯誤.

∴正確命題的個數(shù)是2.

故選:C.

直接寫出特稱命題的否定判斷①;寫出原命題的逆否命題并判斷真假判斷②;由已知結(jié)合回歸直線方程恒過樣本中心點求得a,得到回歸直線方程判斷③;由兩直線垂直與系數(shù)的關(guān)系列式求出m值判斷④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 拋物線 焦點均在 軸上, 的中心和 頂點均為原點 ,從每條曲線上各取兩個點,將其坐標(biāo)記錄于表中,則 的左焦點到 的準(zhǔn)線之間的距離為( )

A.
B.
C.1
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的定義域為(0,+∞),f′(x)為f(x)的導(dǎo)函數(shù),且滿足xf′(x)>f(x),則不等式(x﹣1)f(x+1)>f(x2﹣1)的解集是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ax+b.
(1)若f(x)在x=2有極小值1﹣e2 , 求實數(shù)a,b的值.
(2)若f(x)在定義域R內(nèi)單調(diào)遞增,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)市場調(diào)查,某商品每噸的價格為x(1<x<14)萬元時,該商品的月供給量為y1噸,y1=ax+ a2﹣a(a>0):月需求量為y2噸,y2=﹣ x2 x+1,當(dāng)該商品的需求量大于供給量時,銷售量等于供給量:當(dāng)該商品的需求量不大于供給量時,銷售量等于需求量,該商品的月銷售額等于月銷售量與價格的乘積.
(1)已知a= ,若某月該商品的價格為x=7,求商品在該月的銷售額(精確到1元);
(2)記需求量與供給量相等時的價格為均衡價格,若該商品的均衡價格不低于每噸6萬元,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)p:實數(shù)x滿足x2﹣4ax+3a2<0,其中a>0; q:實數(shù)x滿足 <0.
(1)若a=1,且p∨q為真,求實數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=x3﹣3ax+3a在區(qū)間(0,2)內(nèi)有極小值,則a的取值范圍是( 。
A.a>0
B.a>2
C.0<a<2
D.0<a<4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)在R上存在導(dǎo)數(shù)f′(x),x∈R,有f(﹣x)+f(x)=x2 , 在(0,+∞)上f′(x)<x,若f(4﹣m)﹣f(m)≥8﹣4m.則實數(shù)m的取值范圍為(
A.[﹣2,2]
B.[2,+∞)
C.[0,+∞)
D.(﹣∞,﹣2]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓 (a>b>0)的左右頂點分別是A(﹣ ,0),B( ,0),離心率為 .設(shè)點P(a,t)(t≠0),連接PA交橢圓于點C,坐標(biāo)原點是O.
(Ⅰ)證明:OP⊥BC;
(Ⅱ)若三角形ABC的面積不大于四邊形OBPC的面積,求|t|的最小值.

查看答案和解析>>

同步練習(xí)冊答案