19、已知數(shù)列{an}的n前項和為Sn,且Sn=2an-2n
(1)求數(shù)列{an}的通項;
(2)是否存在m,使{an-(n+m)2n-1}是等比數(shù)列.
分析:(1)求數(shù)列{an}的通項,可根據(jù)題設(shè)中的Sn=2an-2n這個遞推式進(jìn)行變形,研究{an+2n-1}的性質(zhì),求其通項,再求出數(shù)列{an}的通項;
(2)是否存在m,使{an-(n+m)2n-1}是等比數(shù)列,可先假設(shè)存在,由等比數(shù)列性質(zhì)建立方程求參數(shù)的值,若能求出則說明存在,否則說明不存在.
解答:解:(1)由題意an=sn-sn-1=2an-2n-(2an-1-2n-1)?an=2an-1+2n-1
∴an+2n-1=2(an-1+2n-1),故{an+2n-1}是以a1+1為首項,以2為公比的等比數(shù)列
又a1=S1=2a1-21.故a1=2,故{an+2n-1}是以3為首項,以2為公比的等比數(shù)列,
所以an+2n-1=3×2n-1,
∴an=2n
(2)若存在m,使{an-(n+m)2n-1}是等比數(shù)列,則有(a1-(1+m)20)×(a3-(3+m)22)=(a2-(2+m)212
即4×(m2-1)=4×m2,此式不成立,
故不存在實數(shù)m,使{an-(n+m)2n-1}是等比數(shù)列.
點評:本題考點是等比關(guān)系的確定,考查了由遞推式變形求數(shù)列的通項以及利用等比數(shù)列的性質(zhì)確定合得數(shù)列成立的參數(shù)是否存在的問題,本題較抽象,是一個能力型的題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前三項與數(shù)列{bn}的前三項對應(yīng)相同,且a1+2a2+22a3+…+2n-1an=8n,對任意n∈N*都成立,數(shù)列{bn-1-bn}是等差數(shù)列,則數(shù)列{bn}的通項公式為
bn=n2-7n+14
bn=n2-7n+14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}的n前項和為Sn,且Sn=2an-2n
(1)求數(shù)列{an}的通項;
(2)是否存在m,使{an-(n+m)2n-1}是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年浙江省杭州市蕭山區(qū)高考數(shù)學(xué)模擬試卷20(理科)(解析版) 題型:解答題

已知數(shù)列{an}的n前項和為Sn,且Sn=2an-2n
(1)求數(shù)列{an}的通項;
(2)是否存在m,使{an-(n+m)2n-1}是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年浙江省高考仿真模擬數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知數(shù)列{an}的n前項和為Sn,且Sn=2an-2n
(1)求數(shù)列{an}的通項;
(2)是否存在m,使{an-(n+m)2n-1}是等比數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案