已知f(x)=ax3+bx2+cx(a¹0)在x=±1時(shí)取得極值,且f(1)=-1。
(1)試求常數(shù)a,b,c的值;
(2)試判斷x=±1是函數(shù)的極小值還是極大值,并說明理由。
解:(1)f ¢(x)=3ax2+2bx+c,∵ x=±1是函數(shù)f(x)的極值點(diǎn),∴ x=±1方程f ¢(x)=0,即3ax2+2bx+c=0的兩個(gè)根。 由根與系數(shù)的關(guān)系,得 又f(1)=-1,∴ a+b+c=-1, ③ 由①②③解得,b=0,, (2),∴ ,當(dāng)x<-1或x>1時(shí),f ¢(x)>0,當(dāng)-1<x<1時(shí),f ¢(x)<0,∴ 函數(shù)f(x)在(-¥,-1)和(1,+¥)上是增函數(shù),在(-1,1)上是減函數(shù)! 當(dāng)x=-1時(shí),函數(shù)取得極大值f(-1)=1,當(dāng)x=1時(shí),函數(shù)取得極小值f(1)=-1。
|
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
x2+1 |
A、4 | B、0 | C、2m | D、-m+4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
b |
x |
f(a)-f(b) |
a-b |
A、恒小于0 | B、恒大于0 |
C、可能為0 | D、可正可負(fù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知f(x)=ax3+bx2+cx(a≠0)在x=±1時(shí)取得極值,且f(1)=-1.
(1)試求常數(shù)a、b、c的值;
(2)試判斷x=±1是函數(shù)的極小值還是極大值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年河北省高二下學(xué)期3月月考數(shù)學(xué)卷 題型:解答題
已知f(x)=ax3+bx2+cx(a≠0)在x=±1時(shí)取得極值,且f(1)=—1.
(1)試求常數(shù)a、b、c的值;
(2)試判斷x=±1是函數(shù)的極小值點(diǎn)還是極大值點(diǎn),并說明理由
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com