A. | 5 | B. | 7 | C. | 9 | D. | 11 |
分析 根據(jù)已知可得ω為正奇數(shù),且ω≤12,結(jié)合x=-$\frac{π}{4}$為f(x)的零點,x=$\frac{π}{4}$為y=f(x)圖象的對稱軸,求出滿足條件的解析式,并結(jié)合f(x)在($\frac{π}{18}$,$\frac{5π}{36}$)上單調(diào),可得ω的最大值.
解答 解:∵x=-$\frac{π}{4}$為f(x)的零點,x=$\frac{π}{4}$為y=f(x)圖象的對稱軸,
∴$\frac{2n+1}{4}$•T=$\frac{π}{2}$,即 $\frac{2n+1}{4}$•$\frac{2π}{ω}$=$\frac{π}{2}$,(n∈N)
即ω=2n+1,(n∈N)
即ω為正奇數(shù),
∵f(x)在($\frac{π}{18}$,$\frac{5π}{36}$)上單調(diào),則$\frac{5π}{36}$-$\frac{π}{18}$=$\frac{π}{12}$≤$\frac{T}{2}$,
即T=$\frac{2π}{ω}$≥$\frac{π}{6}$,解得:ω≤12,
當(dāng)ω=11時,-$\frac{11π}{4}$+φ=kπ,k∈Z,
∵|φ|≤$\frac{π}{2}$,
∴φ=-$\frac{π}{4}$,
此時f(x)在($\frac{π}{18}$,$\frac{5π}{36}$)不單調(diào),不滿足題意;
當(dāng)ω=9時,-$\frac{9π}{4}$+φ=kπ,k∈Z,
∵|φ|≤$\frac{π}{2}$,
∴φ=$\frac{π}{4}$,
此時f(x)在($\frac{π}{18}$,$\frac{5π}{36}$)單調(diào),滿足題意;
故ω的最大值為9,
故選:C.
點評 本題考查的知識點是正弦型函數(shù)的圖象和性質(zhì),本題轉(zhuǎn)化困難,難度較大.
科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年吉林省高一下學(xué)期期末聯(lián)考數(shù)學(xué)試卷(解析版) 題型:選擇題
已知直線、, 平面α, ∥, ∥α, 那么與平面α的關(guān)系是( ).
A.∥α
B.α
C.∥α或α
D.與α相交
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x≠5} | B. | {x|x=5} | C. | {x|x<5} | D. | {x|x>5} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 最小正周期為π的奇函數(shù) | B. | 最小正周期為π的偶函數(shù) | ||
C. | 最小正周期為$\frac{π}{2}$的奇函數(shù) | D. | 最小正周期為$\frac{π}{2}$的偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{16}{3}$ | B. | $\frac{32}{3}$ | C. | $\frac{64}{3}$ | D. | 32 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 由 ${a_1}=1,{a_{n+1}}=\frac{a_n}{{1+{a_n}}}$,因為${a_1}=1,{a_2}=\frac{1}{2},{a_3}=\frac{1}{3},{a_4}=\frac{1}{4}$,故有${a_n}=\frac{1}{n}(n∈{N^*})$ | |
B. | 科學(xué)家利用魚的沉浮原理制造潛艇 | |
C. | 妲己惑紂王,商滅;西施迷吳王,吳滅;楊貴妃迷唐玄宗,致安史之亂,故曰:“紅顏禍水也” | |
D. | 《論語•學(xué)路》篇中說:“名不正,則言不順;言不順,則事不成;事不成,則禮樂不興;禮樂不興,則刑罰不中;刑罰不中,則民無所措手足;所以,名不正,則民無所措手足”. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com