【題目】如圖1,矩形中, ,將沿折起,得到如圖所示的四棱錐,其中.
(1)證明:平面平面;
(2)求平面與平面所成銳二面角的余弦值.
【答案】(1)見解析;(2)
【解析】試題分析:(1)的中點,連接, .易知, ,又求得, ,所以,得所以平面,平面平面.
(2)建立空間直角坐標(biāo)系,求得平面的法向量.平面的法向量
,所以求得二面角的余弦值為。
試題解析:
(1)在圖2中取的中點,連接, .由條件可知圖1中四邊形為正方形,則有,且可求得.
在中, , , ,由余弦定理得.
在中, ,所以,即.
由于, 平面, 且, ,所以平面.
又平面,故平面平面.
(2)如圖,以為坐標(biāo)原點,以平行于的方向為軸,平行于的方向為軸,建立空間直角坐標(biāo)系.由題設(shè)條件,可得, , , .
由(1)得平面,可求得點坐標(biāo)為,
所以, ,設(shè)平面的法向量為,由及得令,由此可得.
由于, ,設(shè)平面的法向量為,由及得令,由此可得
所以
則平面與平面所成銳二面角的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校研究性學(xué)習(xí)小組對該校高三學(xué)生視力情況進行調(diào)查,在高三的全體1000名學(xué)生中隨機抽取了100名學(xué)生的體檢表,學(xué)習(xí)小組成員發(fā)現(xiàn),學(xué)習(xí)成績突出的學(xué)生,近視的比較多,為了研究學(xué)生的視力與學(xué)習(xí)成績是否有關(guān)系,對年級名次在1~50名和951~1000名的學(xué)生進行了調(diào)查,得到如下數(shù)據(jù):
(1)根據(jù)表中的數(shù)據(jù),能否在犯錯的概率不超過0.05的前提下認(rèn)為視力與學(xué)習(xí)成績有關(guān)系?
(2)根據(jù)表中數(shù)據(jù),在調(diào)查的100名學(xué)生中,按照分層抽樣在不近視的學(xué)生中抽取了9人,進一步調(diào)查他們良好的護眼習(xí)慣,并且在這9人中任取3人,記名次在1~50名的學(xué)生人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
年級名次 | 1~50 | 951~1000 |
近視 | 41 | 32 |
不近視 | 9 | 18 |
附:P(K2≥3.841=0.05)K2= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)a=0時,求f(x)的極值.
(2)當(dāng)a≠0時,若f(x)是減函數(shù),求a的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=cos(ωx+φ)(ω>0,﹣ <φ<0)的最小正周期為π,且f( )= .
(1)求ω和φ的值;
(2)求f(x)的單調(diào)遞增區(qū)間;
(3)求f(x)在[0, ]上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求f(x)的單調(diào)區(qū)間;
(2)求曲線y=f(x)在點(1,f(1))處的切線方程;
(3)求證:對任意的正數(shù)a與b,恒有 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax3﹣6x2+1,若f(x)存在唯一的零點x0 , 且x0>0,則a的取值范圍是( )
A.(﹣∞,﹣4)
B.(4,+∞)
C.(﹣∞,﹣4 )
D.(4 ,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ax2+4x﹣lnx.
(1)當(dāng)a=﹣3時,求f(x)的單調(diào)區(qū)間;
(2)當(dāng)a≠0時,若f(x)是減函數(shù),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|y= },B={x|log2x≤1},則A∩B=( )
A.{x|﹣3≤x≤1}
B.{x|0<x≤1}
C.{x|﹣3≤x≤2}
D.{x|x≤2}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)兩向量e1、e2滿足| |=2,| |=1, 、 的夾角為60°,若向量2t +7 與向量 +t 的夾角為鈍角,求實數(shù)t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com