【題目】已知拋物線焦點(diǎn)為,點(diǎn)A,B,C為該拋物線上不同的三點(diǎn),且滿足.
(1)求;
(2)若直線交軸于點(diǎn),求實(shí)數(shù)的取值范圍.
【答案】(1)(2)
【解析】試題分析:(1)寫出焦點(diǎn)及三點(diǎn)坐標(biāo),利用,可得三點(diǎn)坐標(biāo)間的關(guān)系,再根據(jù)拋物線的定義將到焦點(diǎn)的距離轉(zhuǎn)化為到準(zhǔn)線的距離,可求得;(2)設(shè)出直線方程,將直線方程與拋物線聯(lián)立利用根與系數(shù)的關(guān)系,可得的取值范圍.
試題解析:
設(shè)
由拋物線得焦點(diǎn)坐標(biāo)為,
所以, , ,
所以由得 ,
(1)拋物線的準(zhǔn)線方程為,
由拋物線定義得: , , ,
所以 .
(2)顯然直線斜率存在,設(shè)為,則直線方程為,
聯(lián)立消去得,
所以,即....................... ...................①
且,所以,
代入式子得又點(diǎn)也在拋物線上,
所以,即.....................................②
由①,②及可解得即,
又當(dāng)時(shí),直線過點(diǎn),此時(shí)三點(diǎn)共線,由得
與共線,即點(diǎn)也在直線上,此時(shí)點(diǎn)必與之一重合,
不滿足點(diǎn)為該拋物線上不同的三點(diǎn),所以,
所以實(shí)數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,各棱長均相等, , , 分別為棱, , 的中點(diǎn).
(Ⅰ)證明: 平面;
(Ⅱ)若三棱柱為直棱柱,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:
①頻率是反映事件發(fā)生的頻繁程度,概率反映事件發(fā)生的可能性大小;
②做n次隨機(jī)試驗(yàn),事件A發(fā)生m次,則事件A發(fā)生的頻率就是事件A的概率;
③百分率是頻率,但不是概率;
④頻率是不能脫離n次試驗(yàn)的試驗(yàn)值,而概率是具有確定性的不依賴于試驗(yàn)次數(shù)的理論值;
⑤頻率是概率的近似值,概率是頻率的穩(wěn)定值.
其中正確的是____(填序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司試銷一種成本單價(jià)為500元的新產(chǎn)品,規(guī)定試銷時(shí)銷售單價(jià)不低于成本單價(jià),又不高于800元.經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似看作一次函數(shù)y=kx+b(k≠0),函數(shù)圖象如圖所示.
(1)根據(jù)圖象,求一次函數(shù)y=kx+b(k≠0)的表達(dá)式;
(2)設(shè)公司獲得的毛利潤(毛利潤=銷售總價(jià)-成本總價(jià))為S元.試問銷售單價(jià)定為多少時(shí),該公司可獲得最大毛利潤?最大毛利潤是多少?此時(shí)的銷售量是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 上頂點(diǎn)為,右頂點(diǎn)為,離心率, 為坐標(biāo)原點(diǎn),圓: 與直線相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線: ()與橢圓相交于兩不同點(diǎn),若橢圓上一點(diǎn)滿足,求面積的最大值及此時(shí)的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在上的奇函數(shù),且.若對(duì)任意的, 都有.
(1)用函數(shù)單調(diào)性的定義證明: 在定義域上為增函數(shù);
(2)若,求的取值范圍;
(3)若不等式對(duì)所有的 和都恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), .
(Ⅰ)判斷函數(shù)零點(diǎn)的個(gè)數(shù),并說明理由;
(Ⅱ)記,討論的單調(diào)性;
(Ⅲ)若在恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立坐標(biāo)系,已知點(diǎn)的直角坐標(biāo)為,若直線的極坐標(biāo)方程為.曲線的參數(shù)方程是(為參數(shù)).
(1)求直線和曲線的普通方程;
(2)設(shè)直線和曲線交于兩點(diǎn),求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com