15.已知-5∈{x|x2-ax-5=0},則集合{x|x2+ax+3=0}中所有元素之和為( 。
A.3B.4C.5D.6

分析 由5∈{x|x2-ax-5=0},可得(-5)2+5a-5=0,解得a.代入x2+ax+3=0,解出即可得出.

解答 解:∵-5∈{x|x2-ax-5=0},
∴(-5)2+5a-5=0,
解得a=-4.
由x2-4x+3=0,
解得x=1,3,
∴集合{x|x2+ax+3=0}={1,3}中所有元素之和=1+3=4.
故選:B.

點(diǎn)評(píng) 本題考查了元素與集合之間的關(guān)系、方程的解法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知f(3x-2)的定義域?yàn)閇-2,4],則f(x)的定義域?yàn)椋ā 。?table class="qanwser">A.[-$\frac{4}{3}$,$\frac{2}{3}$]B.[-2,4]C.[0,2]D.[-8,10]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.討論函數(shù)f(x)=x+$\frac{9}{x}$(x>0)的單調(diào)性,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.當(dāng)x∈R時(shí),(a2-1)x2+(a-1)x+$\frac{2}{a+1}$≥0恒成立,則實(shí)數(shù)a的取值范圍為[1,9].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知集合A={x|-1<x<2},B={x|2a<x<a+2},且(A∩B)⊆∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)集合A中的元素是實(shí)數(shù),且滿足1∉A.且若a∈A.則$\frac{1}{1-a}$∈A,若2∈A.寫(xiě)出集合A中的元素.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.求下列函數(shù)的定義域:
(1)y=$\frac{\sqrt{x+1}}{x+2}$;
(2)y=$\frac{1}{x+3}$+$\sqrt{-x}$+$\sqrt{x+4}$;
(3)y=$\frac{1}{\sqrt{6-5x-{x}^{2}}}$;
(4)y=$\frac{\sqrt{2x-1}}{x-1}$+(5x-4)0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若不等式x2+a<0的解集為∅,那么a的取值范圍是(  )
A.a<0B.a≥0C.a>1D.a≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若集合A={y|y=x2-1,x∈R}.B={y|y=x-1,x∈R},則A∩B等于( 。
A.{(0,-1),(1,0)}B.{0,1}C.{-1,0}D.{y|y≥-1}

查看答案和解析>>

同步練習(xí)冊(cè)答案