【題目】已知點(diǎn),動(dòng)圓與直線切于點(diǎn),過與圓相切的兩直線相交于點(diǎn),則點(diǎn)的軌跡方程為( )
A. B.
C. D.
【答案】A
【解析】
先由題意畫出圖形,可見⊙C是△PMN的內(nèi)切圓,則由切線長(zhǎng)定理得|MA|=|MB|、|ND|=|NB|、|PA|=|PD|;此時(shí)求|PM|﹣|PN|可得定值,即滿足雙曲線的定義;然后求出a、b,寫出方程即可(要注意x的取值范圍).
由題意畫圖如下
可見|MA|=|MB|=4,|ND|=|NB|=2,且|PA|=|PD|,
那么|PM|﹣|PN|=(|PA|+|MA|)﹣(|PD|+|ND|)=|MA|﹣|ND|=4﹣2=2<|MN|,
所以點(diǎn)P的軌跡為雙曲線的右支(右頂點(diǎn)除外),
又2a=2,c=3,則a=1,b2=9﹣1=8,
所以點(diǎn)P的軌跡方程為(x>1).
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形和矩形所在的平面互相垂直, ,,M是線段的中點(diǎn).
(Ⅰ)求證:∥平面;
(Ⅱ)求證: 平面;
(Ⅲ) 求點(diǎn)到面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga(x+b)(其中a,b為常數(shù),且a>0,a≠1)的圖象經(jīng)過點(diǎn)A(﹣2,0),B(1,2).
(1)求f(x)的解析式;
(2)若函數(shù)g(x)=( )2x﹣( )x﹣1,x∈[0,+∞),求g(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣ln(x+m)
(1)設(shè)x=0是f(x)的極值點(diǎn),求m,并討論f(x)的單調(diào)性;
(2)當(dāng)m≤2時(shí),證明f(x)>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=(x2﹣2x﹣3)的單調(diào)減區(qū)間是( )
A.(3,+∞)
B.(1,+∞)
C.(﹣∞,1)
D.(﹣∞,﹣1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)滿足f(0)=2和f(x+1)﹣f(x)=2x﹣1對(duì)任意實(shí)數(shù)x都成立.
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)t∈[﹣1,3]時(shí),求y=f(2t)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面幾何中,與三角形的三條邊所在直線的距離相等的點(diǎn)有且只有四個(gè).類似的:在立體幾何中,與正四面體的六條棱所在直線的距離相等的點(diǎn) ( )
A. 有且只有一個(gè) B. 有且只有三個(gè) C. 有且只有四個(gè) D. 有且只有五個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】執(zhí)行兩次如圖所示的程序框圖,若第一次輸入的x值為7,第二次輸入的x值為9,則第一次,第二次輸出的a值分別為( )
A.0,0
B.1,1
C.0,1
D.1,0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下資料是一位銷售經(jīng)理收集到的每年銷售額y(千元)和銷售經(jīng)驗(yàn)x(年)的關(guān)系:
銷售經(jīng)驗(yàn)x/年 | 1 | 3 | 4 | 4 | 6 | 8 | 10 | 10 | 11 | 13 |
年銷售額y/千元 | 80 | 97 | 92 | 102 | 103 | 111 | 119 | 123 | 117 | 136 |
(1)依據(jù)這些數(shù)據(jù)畫出散點(diǎn)圖并作直線=78+4.2x,計(jì)算;
(2)依據(jù)這些數(shù)據(jù)求回歸直線方程并據(jù)此計(jì)算;
(3)比較(1) (2)中的殘差平方和的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com