【題目】下列三個(gè)集合:
①{x|y=x2+1};
②{y|y=x2+1};
③{(x,y)|y=x2+1}.
(1)它們是不是相同的集合?
(2)它們各自的含義是什么?
【答案】(1)它們是不相同的集合.(2)見解析
【解析】試題分析:由題意,可判定(1)中集合為實(shí)數(shù)集;(2)中表示集合;(3)中表示二次函數(shù)圖象上的點(diǎn)作為元素構(gòu)成的點(diǎn)集,所以三個(gè)集合表示不同的集合.
試題解析:
(1)它們是不相同的集合.
(2)集合①是函數(shù)y=x2+1的自變量x所允許的值組成的集合.因?yàn)?/span>x可以取任意實(shí)數(shù),所以{x|y=x2+1}=R.集合②是函數(shù)y=x2+1的所有函數(shù)值y組成的集合.由二次函數(shù)圖像知y≥1,所以{y|y=x2+1}={y|y≥1}.
集合③是函數(shù)y=x2+1圖像上所有點(diǎn)的坐標(biāo)組成的集合.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2016高考江蘇卷】現(xiàn)需要設(shè)計(jì)一個(gè)倉庫,它由上下兩部分組成,上部分的形狀是正四棱錐,下部分的形狀是正四棱柱(如圖所示),并要求正四棱柱的高的四倍.
(1)若則倉庫的容積是多少?
(2)若正四棱柱的側(cè)棱長為6m,則當(dāng)為多少時(shí),倉庫的容積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電腦公司在甲、乙兩地各有一個(gè)分公司,甲分公司現(xiàn)有電腦6臺(tái),乙分公司現(xiàn)有同一型號的電腦12臺(tái).現(xiàn)A地某單位向該公司購買該型號的電腦10臺(tái),B地某單位向該公司購買該型號的電腦8臺(tái).已知從甲地運(yùn)往A,B兩地每臺(tái)電腦的運(yùn)費(fèi)分別是40元和30元,從乙地運(yùn)往A,B兩地每臺(tái)電腦的運(yùn)費(fèi)分別是80元和50元. 若總運(yùn)費(fèi)不超過1000元,則調(diào)運(yùn)方案的種數(shù)為
A.1 B.2
C.3 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,幾何體是圓柱的一部分,它是由矩形(及其內(nèi)部)以邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)得到的, 是的中點(diǎn).
()設(shè)是上的一點(diǎn),且,求的大小;
()當(dāng)時(shí),求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列滿足,為的前項(xiàng)和.證明:對任意,
(1)當(dāng)時(shí),;
(2)當(dāng)時(shí),;
(3)當(dāng)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面四邊形中, , ,將沿折起,使得平面平面,如圖.
(1)求證: ;
(2)若為中點(diǎn),求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求過點(diǎn)且與曲線相切的直線方程;
(Ⅱ)設(shè),其中為非零實(shí)數(shù),若有兩個(gè)極值點(diǎn),且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(I)求的單調(diào)區(qū)間;
(II)若對任意的,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com