【題目】已知函數(shù).

(Ⅰ)求過點(diǎn)且與曲線相切的直線方程;

(Ⅱ)設(shè),其中為非零實(shí)數(shù),若有兩個極值點(diǎn),且,求證:.

【答案】(Ⅰ)(Ⅱ)詳見解析

【解析】試題分析: (Ⅰ)設(shè)切點(diǎn),根據(jù)導(dǎo)數(shù)幾何意義得切線斜率等于切點(diǎn)處導(dǎo)數(shù)值,切點(diǎn)在切線上也在曲線上列方程組,可解得切點(diǎn)坐標(biāo),根據(jù)點(diǎn)斜式寫出切線方程,(Ⅱ)先根據(jù)導(dǎo)數(shù)確定有兩個極值點(diǎn)的條件:,并求出極值點(diǎn),再研究函數(shù),此時先將表示,轉(zhuǎn)化為證明一元函數(shù)上最小值大于零,這可以利用導(dǎo)數(shù)易得.

試題解析:解:(Ⅰ)

設(shè)切點(diǎn)為,則切線的斜率為

點(diǎn)上,

,解得

切線的斜率為切線方程為

(Ⅱ)

當(dāng)時,即時,上單調(diào)遞增;

當(dāng)時,由得,上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增;

當(dāng)時,由得,上單調(diào)遞減,在上單調(diào)遞增.

當(dāng)時,有兩個極值點(diǎn),即,

,由得,

,即證明

即證明

構(gòu)造函數(shù)

上單調(diào)遞增,

,所以時恒成立,即成立

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x),當(dāng)x,y∈R時,恒有f(x+y)=f(x)+f(y).當(dāng)x>0時,f(x)>0.

(1)求證:f(x)是奇函數(shù);

(2)若f(1)=,試求f(x)在區(qū)間[-2,6]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列三個集合:

{x|yx2+1};

{y|yx2+1};

{(xy)|yx2+1}.

(1)它們是不是相同的集合?

(2)它們各自的含義是什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)a (aR).

(1) 判斷函數(shù)f(x)的單調(diào)性并給出證明;

(2) 若存在實(shí)數(shù)a使函數(shù)f(x)是奇函數(shù),求a;

(3)對于(2)中的a,若f(x),當(dāng)x[2,3]時恒成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知上的偶函數(shù),當(dāng)時, .對于結(jié)論

(1)當(dāng)時, ;(2)函數(shù)的零點(diǎn)個數(shù)可以為4,5,7;

(3)若,關(guān)于的方程有5個不同的實(shí)根,則;

(4)若函數(shù)在區(qū)間上恒為正,則實(shí)數(shù)的范圍是.

說法正確的序號是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),已知曲線在點(diǎn)處的切線與直線垂直.

(1)求的值;

(2)若函數(shù),且在區(qū)間上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)常年生產(chǎn)一種出口產(chǎn)品,根據(jù)預(yù)測可知,進(jìn)入21世紀(jì)以來,該產(chǎn)品的產(chǎn)量平穩(wěn)增長.記2009年為第1年,且前4年中,第x年與年產(chǎn)量f(x) 萬件之間的關(guān)系如下表所示:

x

1

2

3

4

f(x)

4.00

5.58

7.00

8.44

f(x)近似符合以下三種函數(shù)模型之一:f(x)=axbf(x)=2xa,f(x)=logxa.

(1)找出你認(rèn)為最適合的函數(shù)模型,并說明理由,然后選取其中你認(rèn)為最適合的數(shù)據(jù)求出相應(yīng)的解析式;

(2)因遭受某國對該產(chǎn)品進(jìn)行反傾銷的影響,2015年的年產(chǎn)量比預(yù)計減少30%,試根據(jù)所建立的函數(shù)模型,確定2015年的年產(chǎn)量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集UR,集合A{x|1x4},B{x|2ax3a}

(1)a=-2,求BA,BUA;

(2)BA,求實(shí)數(shù)a取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求過點(diǎn)且與曲線相切的直線方程;

(Ⅱ)設(shè),其中為非零實(shí)數(shù),若有兩個極值點(diǎn),且,求證:.

查看答案和解析>>

同步練習(xí)冊答案