(本小題滿分14分)
已知的圖像在點(diǎn)處的切線與直線平行.
(1)求a,b滿足的關(guān)系式;
(2)若上恒成立,求a的取值范圍;
(3)證明: ()
(1),根據(jù)題意,即 …………………………………3分
(2)由(Ⅰ)知,,……………………………………………………4分
令,
則,= ………………………………………5分
①當(dāng)時, ,
若,則,在為減函數(shù),存在,
即在上不恒成立. ………………………………………6分
②時,,當(dāng)時,,在增函數(shù),又,
∴,∴恒成立. …………………………………………7分
綜上所述,所求的取值范圍是 ………………………………………………………………8分
(3)有(Ⅱ)知當(dāng)時,在上恒成立.取得 …………9分
令,得,
即 …………………………………10分
∴ ……………………………………………………11分
上式中令n=1,2,3,…,n,并注意到:
然后n個不等式相加得到 ………………………………14分
解析
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知其中是自然對數(shù)的底 .
(1)若在處取得極值,求的值;
(2)求的單調(diào)區(qū)間;
(3)設(shè),存在,使得成立,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
商場銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量(單位:千克)與銷售價格(單位:元/千克)滿足關(guān)系式,其中,為常數(shù),已知銷售價格為5元/千克時,每日可售出該商品11千克.
(1) 求的值;
(2) 若商品的成品為3元/千克, 試確定銷售價格的值,使商場每日銷售該商品所獲得的利潤最大
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中
若在x=1處取得極值,求a的值;
求的單調(diào)區(qū)間;
(Ⅲ)若的最小值為1,求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
已知函數(shù),,其中R.
(1)當(dāng)a=1時,判斷的單調(diào)性;
(2)若在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù),當(dāng)時,若,,總有
成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)=,.
(1)求函數(shù)在區(qū)間上的值域T;
(2)是否存在實(shí)數(shù),對任意給定的集合T中的元素t,在區(qū)間上總存在兩個不同的,使得成立.若存在,求出的取值范圍;若不存在,請說明理由;
(3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)已知函數(shù)().
(I)當(dāng)時,求在點(diǎn)處的切線方程;
(Ⅱ)求函數(shù)在上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
已知是定義在上的奇函數(shù),當(dāng)時
(1)求的解析式;
(2)是否存在實(shí)數(shù),使得當(dāng)的最小值是4?如果存在,求出的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù):.
(1)證明:++2=0對定義域內(nèi)的所有都成立;
(2)當(dāng)的定義域?yàn)閇+,+1]時,求證:的值域?yàn)閇-3,-2];
(3)若,函數(shù)=x2+|(x-) | ,求的最小值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com