(本小題滿分12分)
已知f(x)、g(x)分別為奇函數(shù)、偶函數(shù),且f(x)+g(x)=2x+2x,求f(x)、g(x)的解析式.


解:∵f(x)+g(x)=2x+2x①
f(-x)+g(-x)=2x-2x,            …………………3分
f(x)為奇函數(shù),g(x)為偶函數(shù),       
∴-f(x)+g(x)=2x-2x②             …………………6分
將①②聯(lián)立,得g(x)=,f(x)=+2x.  …………………12分

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題12分)
已知函數(shù)的定義域為[0,2]
(1)求的值
(2)若函數(shù)的最大值是,求實數(shù)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=()x,
函數(shù)y=f1(x)是函數(shù)y=f(x)的反函數(shù).
(1)若函數(shù)y=f1(mx2+mx+1)的定義域為R,求實數(shù)m的取值范圍;
(2)當(dāng)x∈[-1,1]時,求函數(shù)y=[f(x)]2-2af(x)+3的最小值g(a);
(3)是否存在實數(shù)m>n>3,使得g(x)的定義域為[n,m],值域為[n2,m2]?若存在,求出m、n的值;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

.已知,且
(1)求的定義域;(2)判斷的奇偶性;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)是定義在上的奇函數(shù),當(dāng)時,;
(1)當(dāng)時,求的表達式;
(2)在(1)的條件下,求函數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題満分14分)
已知上是增函數(shù),在[0,2]上是減函數(shù),且方程有三個根,它們分別為
(1)求c的值;
(2)求證;
(3)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
設(shè)為奇函數(shù),a為常數(shù)。
(1)      求a的值;
(2)      證明在區(qū)間上為增函數(shù);
(3)      若對于區(qū)間上的每一個的值,不等式恒成立,求實數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
函數(shù)是R上的偶函數(shù),且當(dāng)時,函數(shù)的解析式為
(1)求的值;  
(2)求當(dāng)時,函數(shù)的解析式;
(3)用定義證明上是減函數(shù);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)設(shè),寫出數(shù)列的前5項;
(2)解不等式

查看答案和解析>>

同步練習(xí)冊答案