A. | y=x+$\frac{1}{x}$ | B. | y=sinx+$\frac{1}{sinx}$,x∈(0,$\frac{π}{2}$) | ||
C. | y=$\frac{{{x^2}+2}}{{\sqrt{{x^2}+1}}}$ | D. | y=x+$\frac{1}{x-1}$(x>1) |
分析 根據(jù)基本不等式的使用條件,即可得出結(jié)論.
解答 解:x>0時(shí),y=x+$\frac{1}{x}$的最小值是2,故A不正確;
x∈(0,$\frac{π}{2}$),0<sinx<1,函數(shù)取不到2,故B不正確;
y=$\frac{{{x^2}+2}}{{\sqrt{{x^2}+1}}}$=$\sqrt{{x}^{2}+1}$+$\frac{1}{\sqrt{{x}^{2}+1}}$≥2,x=0時(shí)取等號(hào),即函數(shù)的最小值是2,故正確;
x>1,x-1>0,則y=x+$\frac{1}{x-1}$=x-1+$\frac{1}{x-1}$+1≥2+1,x=02取等號(hào),即函數(shù)的最小值是3,故不正確;
故選:C.
點(diǎn)評(píng) 本題考查基本不等式的運(yùn)用,考查學(xué)生的計(jì)算能力,注意基本不等式的使用條件是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 向右平移$\frac{3π}{4}$個(gè)單位,再將所得圖象上每點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的2倍 | |
B. | 向左平移$\frac{3π}{4}$個(gè)單位,再將所得圖象上每點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的2倍 | |
C. | 每點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,再將所得圖象向右平移$\frac{3π}{4}$個(gè)單位 | |
D. | 每點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,再將所得圖象向左平移$\frac{3π}{4}$個(gè)單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
$\overline x$ | $\overline y$ | $\overline w$ | $\sum_{i=1}^8{{{({x_i}-\overline x)}^2}}$ | $\sum_{i=1}^8{{{({w_i}-\overline w)}^2}}$ | $\sum_{i=1}^8{({x_i}-\overline x)•({{y_i}-\overline y})}$ | $\sum_{i=1}^8{{{({w_i}-\overline w)}^2}}•({{y_i}-\overline y})$ |
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1 469 | 108.8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 抽簽法 | B. | 隨機(jī)數(shù)法 | C. | 系統(tǒng)抽樣法 | D. | 分層抽樣法 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第7項(xiàng) | B. | 第8項(xiàng) | C. | 第9項(xiàng) | D. | 第10項(xiàng) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com