4.某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響,對近8年的年宣傳費xi和年銷售量yi(i=1,2,…,8)數(shù)據(jù)作了初步處理,得到如圖的散點圖及一些統(tǒng)計量的值.

$\overline x$$\overline y$$\overline w$$\sum_{i=1}^8{{{({x_i}-\overline x)}^2}}$$\sum_{i=1}^8{{{({w_i}-\overline w)}^2}}$$\sum_{i=1}^8{({x_i}-\overline x)•({{y_i}-\overline y})}$$\sum_{i=1}^8{{{({w_i}-\overline w)}^2}}•({{y_i}-\overline y})$
46.65636.8289.81.61 469108.8
表中wi=$\sqrt{x}$i,$\overline w$=$\frac{1}{8}$$\sum_{i=1}^{8}$wi
(1)根據(jù)散點圖判斷,y=a+bx與y=c+d$\sqrt{x}$哪一個適宜作為年銷售量y關于年宣傳費x的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結果及表中數(shù)據(jù),建立y關于x的回歸方程;
(3)已知這種產(chǎn)品的年利潤z與x,y的關系為z=0.2y-x.根據(jù)(2)的結果回答下列問題:
①年宣傳費x=49時,年銷售量及年利潤的預報值是多少?
②年宣傳費x為何值時,年利潤的預報值最大?
附:對于一組數(shù)據(jù)(u1,v1),(u2,v2),…,(un,vn),其回歸直線v=α+βu的斜率和截距的最小二乘估計分別為:$\widehatβ=\frac{{\sum_{i=1}^n{({u_i}-\overline u)({{v_i}-\overline v})}}}{{\sum_{i=1}^n{{{({u_i}-\overline u)}^2}}}},\widehatα=\overline v-\widehatβ\overline u$.

分析 (1)根據(jù)散點圖,即可判斷出,
(2)先建立中間量w=$\sqrt{x}$,建立y關于w的線性回歸方程,根據(jù)公式求出w,問題得以解決;
(3)①年宣傳費x=49時,代入到回歸方程,計算即可,
②求出預報值得方程,根據(jù)函數(shù)的性質(zhì),即可求出.

解答 解:(1)由散點圖可以判斷,y=c+d$\sqrt{x}$適宜作為年銷售量y關于年宣傳費x的回歸方程類型.
(2)令w=$\sqrt{x}$,先建立y關于w的線性回歸方程.
由于 d=$\frac{108.8}{.6}$=68,c=$\overline{y}$-d$\overline{w}$=100.6,
所以y關于w的線性回歸方程為y=100.6+68w,
因此y關于w的線性回歸方程為y=100.6+68$\sqrt{x}$.
(3)①由(2)知,當x=49時,
年銷量y的預報值y=100.6+68•$\sqrt{49}$=576.6,
年利潤z的預報值z=576.6×0.2-49=66.32.
②根據(jù)(2)的結果知,年利潤z的預報值z=0.2(100.6+68$\sqrt{x}$)-x=-x+13.6$\sqrt{x}$+20.12.
所以當$\sqrt{x}$=$\frac{13.6}{2}$=6.8,即x=46.24時,z取得最大值.
故年宣傳費為46.24千元時,年利潤的預報值最大.

點評 本題主要考查了線性回歸方程和散點圖的問題,準確的計算是本題的關鍵,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.已知橢圓T:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2,點M(1,$\frac{\sqrt{2}}{2}$)在橢圓上.
(1)求橢圓T的方程;
(2)設P(2,0),A,B是橢圓T上關于x軸對稱的兩個不同的點,連接PB交橢圓T于另一點E,求證直線AE恒過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知某幾何體的三視圖如圖所示,則這個幾何體外接球的表面積為12π;幾何體體積為$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.設f′(a)=4,則$\lim_{h→0}\frac{f(a+2h)-f(a-h)}{h}$=( 。
A.4B.8C.12D.-4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知集合A={x|ax2-3x+2=0}.若A=∅,則實數(shù)a的取值范圍為($\frac{9}{8}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.將函數(shù)y=sinx-$\sqrt{3}$cosx的圖象向右平移a(a>0)個單位長度,所得函數(shù)的圖象關于y軸對稱,則a的最小值是( 。
A.$\frac{π}{3}$B.$\frac{7π}{6}$C.$\frac{π}{6}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.下列函數(shù)的最小值是2的為( 。
A.y=x+$\frac{1}{x}$B.y=sinx+$\frac{1}{sinx}$,x∈(0,$\frac{π}{2}$)
C.y=$\frac{{{x^2}+2}}{{\sqrt{{x^2}+1}}}$D.y=x+$\frac{1}{x-1}$(x>1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知α,β均為銳角,且sinα=$\frac{{\sqrt{26}}}{26}$,tanβ=$\frac{2}{3}$.
(1)求α+β的值;
(2)求cos(α+2β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.在△ABC中,$\overrightarrow{AC}•\overrightarrow{AB}$=|${\overrightarrow{BC}}$|=2,則△ABC面積的最大值為$\sqrt{3}$.

查看答案和解析>>

同步練習冊答案