【題目】從一批蘋果中,隨機(jī)抽取50個,其重量(單位:克)的頻數(shù)分布表如下:
(1)根據(jù)頻數(shù)分布表計(jì)算蘋果的重量在的頻率;
(2)用分層抽樣的方法從重量在和的蘋果中共抽取4個,其中重量在的有幾個?
(3)在(2)中抽出的4個蘋果中,任取2個,寫出所有可能的結(jié)果,并求重量在和中各有1個的概率.
【答案】(1)0.4;(2)1;(3)見解析.
【解析】
(1)用蘋果的重量在的頻率除以樣本容量,即為所求;
(2)根據(jù)重量在的頻數(shù)所占的比例,求得重量在的蘋果的個數(shù);
(3)用列舉法求出所有的基本事件的個數(shù),再求出滿足條件的個數(shù),即可得到所求事件的概率.
解:(1)蘋果的重量在的頻率為
(2)重量在的有(個)
(3)設(shè)這4個蘋果中重量在的有1個,記為1,重量在的有3個,分別記為2,3,4,從中任取兩個,可能的情況有:
(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6種,設(shè)任取2 個,重量在和中各有1個的事件為A,則事件A包含有(1,2),(1,3),(1,4)共3種,
所以
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】張師傅欲將一球形的石材工件削砍加工成一圓柱形的新工件,已知原球形工件的半徑為,則張師傅的材料利用率的最大值等于(注:材料利用率=)( )
A. B. C. D.
【答案】C
【解析】設(shè)球半徑為R,圓柱的體積為時圓柱的體積最大為 ,因此材料利用率= ,選C.
點(diǎn)睛:空間幾何體與球接、切問題的求解方法
求解球與棱柱、棱錐的接、切問題時,一般過球心及接、切點(diǎn)作截面,把空間問題轉(zhuǎn)化為平面圖形與圓的接、切問題,再利用平面幾何知識尋找?guī)缀沃性亻g的關(guān)系求解.
【題型】單選題
【結(jié)束】
12
【題目】已知拋物線: 在點(diǎn)處的切線與曲線: 相切,若動直線分別與曲線、相交于、兩點(diǎn),則的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線C:的焦點(diǎn)到直線l:的距離為.
(1)求m的值.
(2)如圖,已知拋物線C的動弦的中點(diǎn)M在直線l上,過點(diǎn)M且平行于x軸的直線與拋物線C相交于點(diǎn)N,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】健身館某項(xiàng)目收費(fèi)標(biāo)準(zhǔn)為每次60元,現(xiàn)推出會員優(yōu)惠活動:具體收費(fèi)標(biāo)準(zhǔn)如下:
消費(fèi)次數(shù) | 第1次 | 第2次 | 第3次 | 不少于4次 |
收費(fèi)比例 | 0.95 | 0.90 | 0.85 | 0.80 |
現(xiàn)隨機(jī)抽取了100位會員統(tǒng)計(jì)它們的消費(fèi)次數(shù),得到數(shù)據(jù)如下:
消費(fèi)次數(shù) | 1次 | 2次 | 3次 | 不少于4次 |
頻數(shù) | 60 | 25 | 10 | 5 |
假設(shè)該項(xiàng)目的成本為每次30元,根據(jù)給出的數(shù)據(jù)回答下列問題:
(1)估計(jì)1位會員至少消費(fèi)兩次的概率
(2)某會員消費(fèi)4次,求這4次消費(fèi)獲得的平均利潤;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動點(diǎn)到點(diǎn)的距離與到直線的距離的比值為.
(1)求動點(diǎn)的軌跡的方程;
(2)過點(diǎn)的直線與點(diǎn)的軌跡交于兩點(diǎn),,設(shè)點(diǎn),到直線的距離分別為,,當(dāng)時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某房地產(chǎn)商建有三棟樓宇,三樓宇間的距離都為2千米,擬準(zhǔn)備在此三樓宇圍成的區(qū)域外建第四棟樓宇,規(guī)劃要求樓宇對樓宇,的視角為,如圖所示,假設(shè)樓宇大小高度忽略不計(jì).
(1)求四棟樓宇圍成的四邊形區(qū)域面積的最大值;
(2)當(dāng)樓宇與樓宇,間距離相等時,擬在樓宇,間建休息亭,在休息亭和樓宇,間分別鋪設(shè)鵝卵石路和防腐木路,如圖,已知鋪設(shè)鵝卵石路、防腐木路的單價分別為,(單位:元千米,為常數(shù)).記,求鋪設(shè)此鵝卵石路和防腐木路的總費(fèi)用的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為廣泛開展垃圾分類的宣傳教育和倡導(dǎo)工作,使市民樹立垃圾分類的環(huán)保意識,學(xué)會垃圾分類的知識,特舉辦了“垃圾分類知識競賽".據(jù)統(tǒng)計(jì),在為期1個月的活動中,共有兩萬人次參與網(wǎng)絡(luò)答題.市文明實(shí)踐中心隨機(jī)抽取100名參與該活動的市民,以他們單次答題得分作為樣本進(jìn)行分析,由此得到如圖所示的頻率分布直方圖:
(1)求圖中a的值及參與該活動的市民單次挑戰(zhàn)得分的平均成績(同一組中數(shù)據(jù)用該組區(qū)間中點(diǎn)值作代表);
(2)若垃圾分類答題挑戰(zhàn)賽得分落在區(qū)間之外,則可獲得一等獎獎勵,其中,s分別為樣本平均數(shù)和樣本標(biāo)準(zhǔn)差,計(jì)算可得,若某人的答題得分為96分,試判斷此人是否獲得一等獎;
(3)為擴(kuò)大本次“垃圾分類知識競賽”活動的影響力,市文明實(shí)踐中心再次組織市民組隊(duì)參場有獎知識競賽,競賽共分五輪進(jìn)行,已知“光速隊(duì)”與“超能隊(duì)”五輪的成績?nèi)缦卤恚?/span>
成績 | 第一輪 | 第二輪 | 第三輪 | 第四輪 | 第五輪 |
“光速隊(duì)” | 93 | 98 | 94 | 95 | 90 |
“超能隊(duì)” | 93 | 96 | 97 | 94 | 90 |
①分別求“光速隊(duì)”與“超能隊(duì)”五輪成績的平均數(shù)和方差;
②以上述數(shù)據(jù)為依據(jù),你認(rèn)為"光速隊(duì)”與“超能隊(duì)”的現(xiàn)場有獎知識競賽成績誰更穩(wěn)定?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若關(guān)于的方程有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是各項(xiàng)均為正數(shù)的無窮數(shù)列,且滿足,.
(1)若,,求a的值;
(2)設(shè)數(shù)列滿足,其前n項(xiàng)的和為.
①求證:是等差數(shù)列;
②若對于任意的,都存在,使得成立.求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com