【題目】動點到點的距離與到直線的距離的比值為

1)求動點的軌跡的方程;

2)過點的直線與點的軌跡交于兩點,設(shè)點到直線的距離分別為,,當(dāng)時,求直線的方程.

【答案】1;(2.

【解析】

1)設(shè)的坐標(biāo)為,由題意可得等式,整理可得動點的軌跡方程;(2)由題意,可知直線的斜率為0時,不符合題意,當(dāng)直線的斜率不為0時,則設(shè)直線的方程為:,將的方程與橢圓方程聯(lián)立,利用韋達(dá)定理求出,,進(jìn)而求出,可求出的值,進(jìn)而求出直線的方程.

解:(1)設(shè)的坐標(biāo)為,由題意可得,

整理可得:

所以動點的軌跡的方程為:;

2)當(dāng)直線的斜率為0時,則直線,

可得,,

則由題意,則;

當(dāng)直線的斜率不為0時,則設(shè)直線的方程為:,

設(shè),,,

聯(lián)立直線與橢圓的方程:

整理可得,

,

所以,的距離之差為:

,

由題意可得,整理可得:,

解得:,即

所以直線的方程為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為考察某動物疫苗預(yù)防某種疾病的效果,現(xiàn)對200只動物進(jìn)行調(diào)研,并得到如下數(shù)據(jù):

未發(fā)病

發(fā)病

合計

未注射疫苗

20

60

80

注射疫苗

80

40

120

合計

100

100

200

(附:

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

則下列說法正確的:(

A.至少有99.9%的把握認(rèn)為“發(fā)病與沒接種疫苗有關(guān)”

B.至多有99%的把握認(rèn)為“發(fā)病與沒接種疫苗有關(guān)”

C.至多有99.9%的把握認(rèn)為“發(fā)病與沒接種疫苗有關(guān)”

D.“發(fā)病與沒接種疫苗有關(guān)”的錯誤率至少有0.01%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點分別為,且.過橢圓的右焦點作長軸的垂線與橢圓,在第一象限交于點,且滿足.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若矩形的四條邊均與橢圓相切,求該矩形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的焦點為F,準(zhǔn)線為x軸于點A,并截圓所得弦長為,M為平面內(nèi)動點,MAF周長為6

1)求拋物線方程以及點M的軌跡的方程;

2過軌跡的一個焦點作與軸不垂直的任意直線交軌跡兩點,線段的垂直平分線交軸于點,則為定值,且定值是”.命題中涉及了這么幾個要素:給定的圓錐曲線,過該圓錐曲線焦點的弦,的垂直平分線與焦點所在的對稱軸的焦點,的長度與兩點間距離的比值.試類比上述命題,寫出一個關(guān)于拋物線的類似的正確命題,并加以證明.

3)試推廣(2)中的命題,寫出關(guān)于拋物線的一般性命題(不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某次投籃測試中,有兩種投籃方案:方案甲:先在A點投籃一次,以后都在B點投籃;方案乙:始終在B點投籃.每次投籃之間相互獨(dú)立.某選手在A點命中的概率為,命中一次記3分,沒有命中得0分;在B點命中的概率為,命中一次記2分,沒有命中得0分,用隨機(jī)變量表示該選手一次投籃測試的累計得分,如果的值不低于3分,則認(rèn)為其通過測試并停止投籃,否則繼續(xù)投籃,但一次測試最多投籃3.

(1)若該選手選擇方案甲,求測試結(jié)束后所得分的分布列和數(shù)學(xué)期望.

(2)試問該選手選擇哪種方案通過測試的可能性較大?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從一批蘋果中,隨機(jī)抽取50個,其重量(單位:克)的頻數(shù)分布表如下:

1)根據(jù)頻數(shù)分布表計算蘋果的重量在的頻率;

2)用分層抽樣的方法從重量在的蘋果中共抽取4個,其中重量在的有幾個?

3)在(2)中抽出的4個蘋果中,任取2個,寫出所有可能的結(jié)果,并求重量在中各有1個的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,其中常數(shù)

1)當(dāng)時,求函數(shù)的極值;

2)若函數(shù)有兩個零點,求實數(shù)的范圍;

3)設(shè),在區(qū)間內(nèi)是否存在區(qū)間,使函數(shù)在區(qū)間的值域也是?請給出結(jié)論,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若,求函數(shù)的零點個數(shù);

2)若函數(shù)的最小值為2,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,若關(guān)于x的方程3個不同的實數(shù)根,則實數(shù)a的取值集合為________.

查看答案和解析>>

同步練習(xí)冊答案