設(shè)A,B分別為橢圓
x2
a2
+
y2
b2
=1(a,b>0)
的左、右頂點(diǎn),橢圓長半軸的長等于焦距,且x=4為它的右準(zhǔn)線.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)P為右準(zhǔn)線上不同于點(diǎn)(4,0)的任意一點(diǎn),若直線AP,BP分別與橢圓相交于異于A,B的點(diǎn)M、N,證明點(diǎn)B在以MN為直徑的圓內(nèi).
(此題不要求在答題卡上畫圖)
(Ⅰ)依題意得a=2c,
a2
c
=4,
解得a=2,c=1,從而b=
3

故橢圓的方程為
x2
4
+
y2
3
=1

(Ⅱ)由(Ⅰ)得A(-2,0),B(2,0).
設(shè)M(x0,y0).
∵M(jìn)點(diǎn)在橢圓上,
∴y02=
3
4
(4-x02)(1)
又點(diǎn)M異于頂點(diǎn)A、B,
∴-2<x0<2,由P、A、M三點(diǎn)共線可以得
P(4,
6y0
x0+2
).
從而
BM
=(x0-2,y0),
BP
=(2,
6y0
x0+2
).
BM
BP
=2x0-4+
6y02
x0+2
=
2
x0+2
(x02-4+3y02).(2)
將(1)代入(2),化簡得
BM
BP
=
5
2
(2-x0).
∵2-x0>0,
BM
BP
>0,則∠MBP為銳角,從而∠MBN為鈍角,
故點(diǎn)B在以MN為直徑的圓內(nèi).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線與橢圓
x2
27
+
y2
36
=1
有相同焦點(diǎn),且經(jīng)過點(diǎn)(
15
,4)
,則雙曲線的方程為( 。
A.
x2
4
-
y2
5
=1
B.
y2
5
-
x2
4
=1
C.
y2
4
-
x2
5
=1
D.
x2
5
-
y2
4
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

AB是過拋物線x2=y的焦點(diǎn)一條弦,若AB的中點(diǎn)到x軸的距離為1,則弦AB的長度為( 。
A.
5
2
B.
5
4
C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點(diǎn)F是橢圓W:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn),A、B分別是橢圓的右頂點(diǎn)與上頂點(diǎn),橢圓的離心率為
1
2
,三角形ABF的面積為
3
3
2
,
(Ⅰ)求橢圓W的方程;
(Ⅱ)對于x軸上的點(diǎn)P(t,0),橢圓W上存在點(diǎn)Q,使得PQ⊥AQ,求實數(shù)t的取值范圍;
(Ⅲ)直線l:y=kx+m(k≠0)與橢圓W交于不同的兩點(diǎn)M、N(M、N異于橢圓的左右頂點(diǎn)),若以MN為直徑的圓過橢圓W的右頂點(diǎn)A,求證:直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)F1,F(xiàn)2為頂點(diǎn)的三角形的周長為4(
2
+1),一等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)P為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D.
(Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明k1•k2=1;
(Ⅲ)(此小題僅理科做)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓
x2
16
+
y2
9
=1
的左、右焦點(diǎn)分別為F1、F2,過焦點(diǎn)F1的直線交橢圓于A,B兩點(diǎn),若△ABF2的內(nèi)切圓的面積為π.A,B兩點(diǎn)的坐標(biāo)分別為(x1,y1)和(x2,y2),則|y2-y1|的值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓
x2
4
+
y2
a2
=1與雙曲線
x2
a
-
y2
2
=1有相同的焦點(diǎn),則a的值是( 。
A.1B.-1C.±1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線C1:y2=8x與雙曲線C2
x2
a2
-
y2
b2
=1(a>0,b>0)
有公共焦點(diǎn)F2,點(diǎn)A是曲線C1,C2在第一象限的交點(diǎn),且|AF2|=5.
(Ⅰ)求雙曲線C2的方程;
(Ⅱ)以F1為圓心的圓M與雙曲線的一條漸近線相切,圓N:(x-2)2+y2=1.平面上有點(diǎn)P滿足:存在過點(diǎn)P的無窮多對互相垂直的直線l1,l2,它們分別與圓M,N相交,且直線l1被圓M截得的弦長與直線l2被圓N截得的弦長的比為
3
:1
,試求所有滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知離心率為
6
3
的橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
與圓C:x2+(y-3)2=4交于A,B兩點(diǎn),且∠ACB=120°,C在AB上方,如圖所示,
(1)求橢圓E的方程;
(2)是否存在過交點(diǎn)B,斜率存在且不為0的直線l,使得該直線截圓C和橢圓E所得的弦長相等?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案