AB是過拋物線x2=y的焦點一條弦,若AB的中點到x軸的距離為1,則弦AB的長度為( 。
A.
5
2
B.
5
4
C.2D.3
根據(jù)拋物線方程可知拋物線準(zhǔn)線方程為x=-
1
4

∵AB的中點到x軸的距離為1,
∴AB的中點到準(zhǔn)線的距離為1+
1
4
=
5
4

∴根據(jù)拋物線的定義,可得弦AB的長度為2
5
4
=
5
2

故選:A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的兩焦點分別為F1(-2
2
,0)、F2(2
2
,0),長軸長為6,
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知過點(0,2)且斜率為1的直線交橢圓C于A、B兩點,求線段AB的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知三角形△ABC的兩頂點為B(-2,0),C(2,0),它的周長為10,求頂點A軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點F1的坐標(biāo)為(-1,0),已知橢圓E上的一點到F1、F2兩點的距離之和為4.
(Ⅰ)求橢圓E的方程;
(Ⅱ)過橢圓E的右焦點F2作一條傾斜角為
π
4
的直線交橢圓于C、D,求△CDF1的面積;
(Ⅲ)設(shè)點P(4,t)(t≠0),A、B分別是橢圓的左、右頂點,若直線AP、BP分別與橢圓相交異于A、B的點M、N,求證∠MBP為銳角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

從圓O:x2+y2=4上任意一點P向x軸作垂線,垂足為P′,點M是線段PP′的中點,則點M的軌跡方程是( 。
A.
9x2
16
+
y2
4
=1
B.
9y2
16
+
x2
4
=1
C.x2+
y2
4
=1
D.
x2
4
+y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
6
3
,橢圓短軸的一個端點與兩個焦點構(gòu)成的三角形的面積為
5
2
3

(1)求橢圓C的方程;
(2)已知動直線y=k(x+1)與橢圓C相交于A、B兩點.
①若線段AB中點的橫坐標(biāo)為-
1
2
,求斜率k的值;
②已知點M(-
7
3
,0)
,求證:
MA
MB
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓中心在原點,焦點在x軸上,長軸長等于12,離心率為
1
3

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)在橢圓上任取一點P,過P點做y軸垂線段PQ,Q為垂足,當(dāng)P在橢圓上運動時,求線段PQ的中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)A,B分別為橢圓
x2
a2
+
y2
b2
=1(a,b>0)
的左、右頂點,橢圓長半軸的長等于焦距,且x=4為它的右準(zhǔn)線.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)P為右準(zhǔn)線上不同于點(4,0)的任意一點,若直線AP,BP分別與橢圓相交于異于A,B的點M、N,證明點B在以MN為直徑的圓內(nèi).
(此題不要求在答題卡上畫圖)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)有兩個頂點在直線x+2y-2=0上
(1)求橢圓C的方程;
(2)當(dāng)直線l:y=x+m與橢圓C相交時,求m的取值范圍;
(3)設(shè)直線l:y=x+m與橢圓C交于A,B兩點,O為坐標(biāo)原點,若以為AB直徑的圓過原點,求m的值.

查看答案和解析>>

同步練習(xí)冊答案