已知f(x)=ax2+bx+3a+b是偶函數(shù),定義域為[a-1,2a],則a+b=   
【答案】分析:先利用多項式函數(shù)是偶函數(shù)的特點:不含奇次項得到b=0,偶函數(shù)的定義域關(guān)于原點對稱,列出方程得到a的值,求出a,b即得.
解答:解:∵函數(shù)f(x)=ax2+bx+3a+b是定義域為[a-1,2a]的偶函數(shù)
∴其定義域關(guān)于原點對稱,故a-1=-2a,
又其奇次項系數(shù)必為0,故b=0
解得 ,b=0
∴a+b=
故答案為:
點評:本小題主要考查函數(shù)單調(diào)性的應(yīng)用、多項式函數(shù)等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.注意具有奇偶性的函數(shù)的定義域關(guān)于原點對稱.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

例2:已知f(x)=ax2+bx+c的圖象過點(-1,0),是否存在常數(shù)a、b、c,使不等式x≤f(x)≤
x2+12
對一切實數(shù)x都成立?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax2+bx,若1≤f(1)≤3,-1≤f(-1)≤1,則f(2)的取值范圍是
[2,10]
[2,10]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax2-blnx+2x(a>0,b>0)在區(qū)間(
1
2
,1)
上不單調(diào),則
3b-2
3a+2
的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax2+bx+c(a≠0),g(x)=f[f(x)]
①若f(x)無零點,則g(x)>0對?x∈R成立;
②若f(x)有且只有一個零點,則g(x)必有兩個零點;
③若方程f(x)=0有兩個不等實根,則方程g(x)=0不可能無解
其中真命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax2-3ax+a2-1(a<0),則f(3),f(-3),f(
3
2
)從小到大的順序是
f(-3)<f(3)<f(
3
2
f(-3)<f(3)<f(
3
2

查看答案和解析>>

同步練習(xí)冊答案