拋物線y=8x2的準(zhǔn)線方程是( 。
A、y=-2
B、x=-1
C、x=-
1
16
D、y=-
1
32
考點(diǎn):拋物線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:先將拋物線的方程化為準(zhǔn)線方程,進(jìn)而根據(jù)拋物線的性質(zhì)可求得答案.
解答: 解:因?yàn)閽佄锞y=8x2,
可化為:x2=
1
8
y,
∴2p=
1
8
,
則線的準(zhǔn)線方程為y=-
1
32

故選:D
點(diǎn)評:本題主要考查拋物線的定義和性質(zhì),難度不大,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線y=x2-1上兩點(diǎn)A(2,3),B(2+△x,3△y),當(dāng)△x=1,割線AB斜率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知兩個(gè)正方形ABCD 和DCEF不在同一平面內(nèi),M,N分別為AB,DF的中點(diǎn).若平面ABCD⊥平面DCEF,求直線MN與平面DCEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知空間中三點(diǎn)A(-2,0,2),B(-1,1,2),C(-3,0,4),設(shè)
AB
=
a
,
AC
=
b

(1)若|
c
|=3,且
c
BC
,求
c

(2)求
a
b
的夾角的余弦值;
(3)若k
a
+
b
與k
a
-2
b
互相垂直,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p:關(guān)于x的不等式x2+(a-1)x+a2≤0的解集為∅;命題q:函數(shù)y=(2a2-a)x為增函數(shù). 分別求出符合下列條件的實(shí)數(shù)a的取值范圍.
(1)p、q至少有一個(gè)是真命題;
(2)p或q是真命題且p且q是假命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若拋物線y2=2px(p>0)上一點(diǎn)到焦點(diǎn)和拋物線對稱軸的距離分別為10和6,則拋物線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中正確的有
 
  (填寫正確的序號)
(1)已知f(n)=sin
6
,則f(1)+f(2)+…+f(2014)=1;
(2)已知向量
OA
=(0,1),
OB
=(k,k),
OC
=(1,3),且
AB
AC
,則實(shí)數(shù)k=-1;
(3)四位二進(jìn)制數(shù)能表示的最大十進(jìn)制數(shù)是15;
(4)函數(shù)y=cos(2x+
π
3
)的圖象的一個(gè)對稱中心是(
π
12
,0)
(5)若對任意實(shí)數(shù)a,函數(shù)y=5sin(
2k+1
3
πx-
π
6
)(k∈N)在區(qū)間[a,a+3]上的值
5
4
出現(xiàn)不少于4次且不多于8次,則k的值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解不等式或不等式組.
(1)|3-4x|>5;
(2)
2x-1
x+3
≥1

(3)
3x-1≥3
1
2
x-
2
3
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x+1)是R上的偶函數(shù),且x>1時(shí)f′(x)<0恒成立,又f(4)=0,則(x+3)f(x+4)<0的解集是
 

查看答案和解析>>

同步練習(xí)冊答案