【題目】某高中三年級共有人,其中男生人,女生人,為調(diào)查該年級學生每周平均體育運動時間的情況,采用分層抽樣的方法,收集位學生每周平均體育運動時間的樣本數(shù)據(jù)(單位:小時).
(Ⅰ)應收集多少位女生樣本數(shù)據(jù)?
(Ⅱ)根據(jù)這個樣本數(shù)據(jù),得到學生每周平均體育運動時間的頻率分布直方圖(如圖所示).其中樣本數(shù)據(jù)分組區(qū)間為: , , , , , .估計該年組學生每周平均體育運動時間超過個小時的概率.
(Ⅲ)在樣本數(shù)據(jù)中,有位女生的每周平均體育運動時間超過個小時.請完成每周平均體育運動時間與性別的列聯(lián)表,并判斷是否有的把握認為“該年級學生的每周平均體育運動時間與性別有關(guān)”.
附:
【答案】(1) (2) (3)有的把握認為“該年組學生的周平均體育運動時間與性別有關(guān)”
【解析】試題分析:(Ⅰ)利用分層抽樣的特點(等比例抽樣)進行求解;(Ⅱ)利用頻率分布直方圖進行求解;(Ⅲ)先利用頻率分布直方圖得到每周平均體育運動時間與性別的列聯(lián)表,再利用公式求值,利用臨界值表進行判定.
試題解析:(Ⅰ),所以應收集位女生的樣本數(shù)據(jù)
(II)由頻率分布直方圖得,該年級學生每周平均體育運動時間超過個小時的概率為.
(Ⅲ)由(Ⅱ)知, 位學生中有人的每周下均體育運動時間超過小時. 人的每平下均體育運動時間小超過小時,又因為樣本數(shù)據(jù)中有關(guān)于男生的. 是關(guān)于女生.所以每周平均體育運動時間與性別列聯(lián)表如下:
男生 | 女生 | 總計 | |
每周平均體育運動時間不超過小時 | |||
每周平均體育運動時間超過小時 | |||
總計 |
結(jié)合列聯(lián)表可算得.
有的把握認為“該年組學生的周平均體育運動時間與性別有關(guān)”.
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在極坐標系中,圓的圓心坐標為,半徑為2.以極點為原點,極軸為的正半軸,取相同的長度單位建立平面直角坐標系,直線的參數(shù)方程為(為參數(shù)).
(1)求圓的極坐標方程;
(2)設(shè)與圓的交點為, 與軸的交點為,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,以坐標原點為極點, 軸正半軸為極軸,建立極坐標系,點的極坐標為,直線的極坐標方程為,且過點,曲線的參考方程為(為參數(shù)).
(1)求曲線上的點到直線的距離的最大值與最小值;
(2)過點與直線平行的直線與曲線交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐中, 平面,底面為菱形, , 是中點, 是的中點, 是上的點.
(Ⅰ)求證:平面平面;
(Ⅱ)當是中點,且時,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以為極點,軸非負半軸為極軸建立坐標系,已知曲線的極坐標方程為,直線的參數(shù)方程為: (為參數(shù)),兩曲線相交于兩點.
(1)寫出曲線的直角坐標方程和直線的普通方程;
(2)若求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè),定義(,且為常數(shù)),若,,.以下四個命題中為真命題的是__________.
①不存在極值;②若的反函數(shù)為,且函數(shù)與函數(shù)有兩個公共點,則;③若在上是減函數(shù),則實數(shù)的取值范圍是;④若,則在的曲線上存在兩點,使得過這兩點的切線互相垂直.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com