分析 (1)利用遞推關(guān)系取n=1,2,3即可得出.
(2)利用數(shù)列遞推關(guān)系即可得出.
(3)利用放縮與“裂項求和”方法即可得出.
解答 (1)解:令n=1,得a1=1;令n=2,有a1+2a2=2,得${a_2}=\frac{1}{2}$;
令n=3,有${a_1}+2{a_2}+3{a_3}=\frac{11}{4}$,得${a_3}=\frac{1}{4}$.
(2)解:∵${a_1}+2{a_2}+…+n{a_n}=4-\frac{n+2}{{{2^{n-1}}}}$,(1)式
所以,當(dāng)n≥2時,${a_1}+2{a_2}+…+(n-1){a_{n-1}}=4-\frac{n+1}{{{2^{n-2}}}}$,(2)式
兩式相減得:$n{a_n}=\frac{n+1}{{{2^{n-2}}}}-\frac{n+2}{{{2^{n-1}}}}=\frac{n}{{{2^{n-1}}}}$,∴${a_n}=\frac{1}{{{2^{n-1}}}}$.
當(dāng)n=1時,a1=1也適合${a_n}=\frac{1}{{{2^{n-1}}}}$,
∴${a_n}=\frac{1}{{{2^{n-1}}}}$(n∈N*).
(3)證明:${b_n}=1+{log_{\frac{1}{2}}}{a_n}=1+{log_{\frac{1}{2}}}\frac{1}{{{2^{n-1}}}}=n$,
當(dāng)n=1時,$\frac{1}{b_1^2}=1<\frac{7}{4}$;當(dāng)n=2時,$\frac{1}{b_1^2}+\frac{1}{b_2^2}=1+\frac{1}{4}=\frac{5}{4}<\frac{7}{4}$;
當(dāng)n>2時,$\frac{1}{b_n^2}=\frac{1}{n^2}<\frac{1}{n(n-1)}=\frac{1}{n-1}-\frac{1}{n}$,$\frac{1}{b_1^2}+\frac{1}{b_2^2}+…+\frac{1}{b_n^2}<\frac{1}{b_1^2}+\frac{1}{b_2^2}+(\frac{1}{2}-\frac{1}{3})+…+(\frac{1}{n-1}-\frac{1}{n})=1+\frac{1}{4}+\frac{1}{2}-\frac{1}{n}=\frac{7}{4}-\frac{1}{n}<\frac{7}{4}$,
綜合可得:$\frac{1}{b_1^2}+\frac{1}{b_2^2}+…+\frac{1}{b_n^2}<\frac{7}{4}$.
點評 本題考查了數(shù)列遞推關(guān)系、放縮法與“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分非必要條件 | B. | 必要非充分條件 | ||
C. | 充要條件 | D. | 既非充分又非必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $arcsin\frac{1}{3}$ | B. | $-\frac{π}{2}-arcsin(-\frac{1}{3})$ | C. | $-π+arcsin(-\frac{1}{3})$ | D. | $-π-arcsin(-\frac{1}{3})$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com